395 research outputs found
Coexistence of localized and itinerant electrons in BaFe2X3 (X = S and Se) revealed by photoemission spectroscopy
We report a photoemission study at room temperature on BaFe2X3 (X = S and Se)
and CsFe2Se3 in which two-leg ladders are formed by the Fe sites. The Fe 2p
core-level peaks of BaFe2X3 are broad and exhibit two components, indicating
that itinerant and localized Fe 3d sites coexist similar to KxFe2-ySe2. The Fe
2p core-level peak of CsFe2Se3 is rather sharp and is accompanied by a
charge-transfer satellite. The insulating ground state of CsFe2Se3 can be
viewed as a Fe2+ Mott insulator in spite of the formal valence of +2.5. The
itinerant versus localized behaviors can be associated with the stability of
chalcogen p holes in the two-leg ladder structure.Comment: 5 pages, 5 figures, Accepted in publication for Physical Review
Orbital polarons and ferromagnetic insulators in manganites
We argue that in lightly hole doped perovskite-type Mn oxides the holes
(Mn sites) are surrounded by nearest neighbor Mn sites in which
the occupied orbitals have their lobes directed towards the central hole
(Mn) site and with spins coupled ferromagnetically to the central spin.
This composite object, which can be viewed as a combined orbital-spin-lattice
polaron, is accompanied by the breathing type (Mn) and Jahn-Teller type
(Mn) local lattice distortions. We present calculations which indicate
that for certain doping levels these orbital polarons may crystallize into a
charge and orbitally ordered ferromagnetic insulating state.Comment: 5 pages, 4 figures, to be published in PR
Unusual superexchange pathways in a Ni triangular lattice of NiGaS with negative charge-transfer energy
We have studied the electronic structure of the Ni triangular lattice in
NiGaS using photoemission spectroscopy and subsequent model
calculations. The cluster-model analysis of the Ni 2 core-level spectrum
shows that the S 3 to Ni 3 charge-transfer energy is -1 eV and the
ground state is dominated by the configuration ( is a S 3 hole).
Cell perturbation analysis for the NiS triangular lattice indicates that
the strong S 3 hole character of the ground state provides the enhanced
superexchange interaction between the third nearest neighbor sites.Comment: 10 pages, 5 figures, accepted to PR
Prediction of Orbital Ordering in Single-Layered Ruthenates
The key role of the orbital degree of freedom to understand the magnetic
properties of layered ruthenates is here discussed. In the G-type
antiferromagnetic phase of CaRuO, recent X-ray experiments reported the
presence of 0.5 hole per site in the orbital, while the
and orbitals contain 1.5 holes. This unexpected hole
distribution is explained by a novel state with orbital ordering (OO),
stabilized by a combination of Coulomb interactions and lattice distortions. In
addition, the rich phase diagram presented here suggests the possibility of
large magnetoresistance effects, and predicts a new ferromagnetic OO phase in
ruthenates.Comment: 4 pages, Revtex, with 2 figures embedded in the text. Submitted to
Phys. Rev. Let
Charge and orbital ordering in underdoped La1-xSrxMnO3
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0
< x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At
x=1/8, several charge and orbitally modulated states are found to be stable and
almost degenerate in energy with a homogeneous ferromagnetic state. The present
calculation indicates that a ferromagnetic state with a charge modulation along
the c-axis which is consistent with the experiment by Yamada et al. might be
responsible for the anomalous behavior around x = 1/8.Comment: 5 pages, 5 figure
Photoemission Spectral Weight Transfer and Mass Renormalization in the Fermi-Liquid System LaSrTiO
We have performed a photoemission study of LaSrTiO near
the filling-control metal-insulator transition (MIT) as a function of hole
doping. Mass renormalization deduced from the spectral weight and the width of
the quasi-particle band around the chemical potential is compared with
that deduced from the electronic specific heat. The result implies that, near
the MIT, band narrowing occurs strongly in the vicinity of . Spectral
weight transfer occurs from the coherent to the incoherent parts upon
antiferromagnetic ordering, which we associate with the partial gap opening at
.Comment: 4 pages, 3 figure
Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide
We have studied local magnetic moment and electronic phase separation in
superconducting KFeSe by x-ray emission and absorption
spectroscopy. Detailed temperature dependent measurements at the Fe K-edge have
revealed coexisting electronic phases and their correlation with the transport
properties. By cooling down, the local magnetic moment of Fe shows a sharp drop
across the superconducting transition temperature (T) and the coexisting
phases exchange spectral weights with the low spin state gaining intensity at
the expense of the higher spin state. After annealing the sample across the
iron-vacancy order temperature, the system does not recover the initial state
and the spectral weight anomaly at T as well as superconductivity
disappear. The results clearly underline that the coexistence of the low spin
and high spin phases and the transitions between them provide unusual magnetic
fluctuations and have a fundamental role in the superconducting mechanism of
electronically inhomogeneous KFeSe system.Comment: 6 pages, 5 figure
Order from disorder: Quantum spin gap in magnon spectra of LaTiO_3
A theory of the anisotropic superexchange and low energy spin excitations in
a Mott insulator with t_{2g} orbital degeneracy is presented. We observe that
the spin-orbit coupling induces frustrating Ising-like anisotropy terms in the
spin Hamiltonian, which invalidate noninteracting spin wave theory. The
frustration of classical states is resolved by an order from disorder
mechanism, which selects a particular direction of the staggered moment and
generates a quantum spin gap. The theory explains well the observed magnon gaps
in LaTiO_3. As a test case, a specific prediction is made on the splitting of
magnon branches at certain momentum directions.Comment: 5 pages, 2 figures, final versio
- …