11 research outputs found

    Characterization of Photosensitive Composition Based on Oligo-ladder Phenylsilsesquioxane

    No full text

    Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    Get PDF
    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously

    Influence of the Metals and Ligands in Dinuclear Complexes on Phosphopeptide Sequencing by Electron Transfer Dissociation Tandem Mass Spectrometry

    No full text
    International audiencePhosphorylation is one of the most important protein modifications, and electron-transfer dissociation tandem mass spectrometry (ETD-MS/MS) is a potentially useful method for the sequencing of phosphopeptides, including determination of the phosphorylation site. Notably, ETD-MS/MS typically provides useful information when the precursor contains more than three positive charges. It is not yet used as an analysis method for large-scale phosphopeptide production due to difficulties occurring in the production of acidic phosphopeptides having more than three positive charges. To increase the charge state of phosphopeptides, we used dinuclear metal complexes, which selectively bind to the phosphate group in phosphopeptides with the addition of positive charge(s). Dinuclear copper, zinc, and gallium complexes were tested and it was found that the type of metal present in the complex strongly affected the affinity of the phosphorylated compounds and their ETD fragmentation. The dinuclear copper complex interacted weakly with the phosphate groups and ETD-induced peptide fragmentation was largely suppressed by the presence of Cu2+, which worked as an electron trap. The dinuclear gallium complex was strongly bound to a phosphate group. However, the ligand binding to gallium acted as an electron trap and the presence of dinuclear gallium complex in the precursor for ETD-MS/MS hampered the sequencing of the phosphopeptides, as in the case of dinuclear copper complexes. In contrast, dinuclear zinc complexes efficiently bind to phosphopeptides with an increase in the charge state, facilitating phosphopeptide sequencing by ETD-MS/MS. The fragmentation of the ligand and peptide backbone in the dinuclear zinc–phosphopeptide complex were competitively induced by ETD. These processes are influenced by the ligand structure and so the detailed ETD fragmentation pathways were investigated using density functional theory calculations

    Synthesis and Characterization of Functionalized Magnetic Nanoparticles for the Detection of Pesticide

    Get PDF
    We synthesized magnetic nanoparticles (MNPs) by mixing aqueous solutions of 3d transition metal chlorides (MCl2·nH2O) and a sodium metasilicate nonahydrate (Na2SiO3·9H2O) in order to produce monodispersed MNPs in a single step. The particle size can be controlled by adjusting the annealing temperature. We characterized the MNPs by X-ray diffraction (XRD), superconducting quantum interference device (SQUID), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and zeta-potential measurement. Paramagnetic and superparamagnetic behaviors were found for the obtained samples depending on the particle size (d=3.0–4.6 nm). The synthesized MNPs could be modified with the amino-, phenyl-, and carboxy- groups on MNPs' surface by silanization procedure, respectively. The purpose of functionalizing the surface of the nanoscale magnetic particles was to realize subsequent capture and detection with desired other molecules by nanoparticle assisted laser ionization/desorption mass spectrometry

    Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice

    Get PDF
    It is known that one of starch branching enzyme (BE) isoforms, BEIIb, plays a specific role not only in the synthesis of distinct amylopectin cluster structure, but also in the formation of the internal structure of starch granules in rice endosperm because in its absence the starch crystalline polymorph changes to the B-type from the typical A-type found in the wild-type (WT) cereal endosperm starch granules. In the present study, to examine the contribution of BEIIb to the amylopectin cluster structure, the chain-length distributions of amylopectin and its phosphorylase-limit dextrins (Φ-LD) from endosperm and culm of a null be2b mutant called amylose-extender (ae) mutant line, EM10, were compared with those of its WT cultivar, Kinmaze, of japonica rice. The results strongly suggest that BEIIb specifically formed new short chains whose branch points were localized in the basal part of the crystalline lamellae and presumably in the intermediate between the crystalline and amorphous lamellae of amylopectin clusters in the WT endosperm, whereas in its absence branch points which were mainly formed by BEI were only located in the amorphous lamellae of amylopectin. These differences in the cluster structure of amylopectin between Kinmaze and EM10 endosperm were considered to be responsible for the differences in the A-type and B-type crystalline structures of starch granules between Kinmaze and EM10, respectively. The changes in internal structure of starch granules caused by BEIIb were analyzed by wide angle X-ray diffraction, small-angle X-ray scattering, solid state ^C NMR, and optical sum frequency generation spectroscopy. It was noted that the size the amylopectin cluster in ae endosperm (approximately 8.24 nm) was significantly smaller than that in WT endosperm (approximately 8.81 nm). Based on the present results, we proposed a model for the cluster structure of amylopectin in WT and ae mutant of rice endosperm. We also hypothesized the role of BEIIa in amylopectin biosynthesis in culm where BEIIb was not expressed and instead BEIIa was the major BE component in WT of rice

    Ultrastrong, Transparent Polytruxillamides Derived from Microbial Photodimers

    No full text
    Ultrastrong and transparent bioplastics are generated from fermented microbial monomers. An exotic aromatic amino acid, 4-aminocinnamic acid, was prepared from a biomass using recombinant bacteria, and quantitatively photodimerized, and diacid and diamino monomers that were both characterized by a rigid α-truxillate structure were generated. These two monomers were polycondensed to create the polyamides with a phenylene­cyclobutane repeating backbone such as poly­{(4,4′-diyl-α-truxillic acid dimethyl ester) 4,4′-diacetamido-α-truxillamide} which was processed into amorphous fibers and plastic films having high transparency. In spite of noncrystalline structure, mechanical strength of the fiber is 407 MPa at maximum higher than those of other transparent plastics and borosilicate glasses, presumably due to the tentative molecular spring function of the phenylene­cyclobutanyl backbone
    corecore