172 research outputs found

    Universal Scaling Behavior of Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets

    Full text link
    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior of anomalous Hall conductivity σxy\sigma_{xy} as a function of longitudinal conductivity σxx\sigma_{xx} over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient αxy\alpha_{xy} shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.Comment: 4pages, 4figures, 1tabl

    Investigation of initiation of gigantic jets connecting thunderclouds to the ionosphere

    Get PDF
    The initiation of giant electrical discharges called as "gigantic jets" connecting thunderclouds to the ionosphere is investigated by numerical simulation method in this paper. Using similarity relations, the triggering conditions of streamer formation in laboratory situations are extended to form a criterion of initiation of gigantic jets. The energy source causing a gigantic jet is considered due to the quasi-electrostatic field generated by thunderclouds. The electron dynamics from ionization threshold to streamer initiation are simulated by the Monte Carlo technique. It is found that gigantic jets are initiated at a height of ~18-24 km. This is in agreement with the observations. The method presented in this paper could be also applied to the analysis of the initiation of other discharges such as blue jets and red sprites.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Denotative and Connotative Semantics in Hypermedia: Proposal for a Semiotic-Aware Architecture

    Get PDF
    In this article we claim that the linguistic-centered view within hypermedia systems needs refinement through a semiotic-based approach before real interoperation between media can be achieved. We discuss the problems of visual signification for images and video in dynamic systems, in which users can access visual material in a non-linear fashion. We describe how semiotics can help overcome such problems, by allowing descriptions of the material on both denotative and connotative levels. Finally we propose an architecture for a dynamic semiotic-aware hypermedia system

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    A compendium of human gene functions derived from evolutionary modelling

    Get PDF
    A comprehensive, computable representation of the functional repertoire of all macromolecules encoded within the human genome is a foundational resource for biology and biomedical research. The Gene Ontology Consortium has been working towards this goal by generating a structured body of information about gene functions, which now includes experimental findings reported in more than 175,000 publications for human genes and genes in experimentally tractable model organisms1,2. Here, we describe the results of a large, international effort to integrate all of these findings to create a representation of human gene functions that is as complete and accurate as possible. Specifically, we apply an expert-curated, explicit evolutionary modelling approach to all human protein-coding genes. This approach integrates available experimental information across families of related genes into models that reconstruct the gain and loss of functional characteristics over evolutionary time. The models and the resulting set of 68,667 integrated gene functions cover approximately 82% of human protein-coding genes. The functional repertoire reveals a marked preponderance of molecular regulatory functions, and the models provide insights into the evolutionary origins of human gene functions. We show that our set of descriptions of functions can improve the widely used genomic technique of Gene Ontology enrichment analysis. The experimental evidence for each functional characteristic is recorded, thereby enabling the scientific community to help review and improve the resource, which we have made publicly available

    COVID-19-related mortality in kidney transplant and haemodialysis patients: A comparative, prospective registry-based study

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) has exposed haemodialysis (HD) patients and kidney transplant (KT) recipients to an unprecedented life-threatening infectious disease, raising concerns about kidney replacement therapy (KRT) strategy during the pandemic. This study investigated the association of the type of KRT with COVID-19 severity, adjusting for differences in individual characteristics. Methods: Data on KT recipients and HD patients diagnosed with COVID-19 between 1 February 2020 and 1 December 2020 were retrieved from the European Renal Association COVID-19 Database. Cox regression models adjusted for age, sex, frailty and comorbidities were used to estimate hazard ratios (HRs) for 28-day mortality risk in all patients and in the subsets that were tested because of symptoms. Results: A total of 1670 patients (496 functional KT and 1174 HD) were included; 16.9% of KT and 23.9% of HD patients died within 28 days of presentation. The unadjusted 28-day mortality risk was 33% lower in KT recipients compared with HD patients {HR 0.67 [95% confidence interval (CI) 0.52-0.85]}. In a fully adjusted model, the risk was 78% higher in KT recipients [HR 1.78 (95% CI 1.22-2.61)] compared with HD patients. This association was similar in patients tested because of symptoms [fully adjusted model HR 2.00 (95% CI 1.31-3.06)]. This risk was dramatically increased during the first post-transplant year. Results were similar for other endpoints (e.g. hospitalization, intensive care unit admission and mortality &gt;28 days) and across subgroups. Conclusions: KT recipients had a greater risk of a more severe course of COVID-19 compared with HD patients, therefore they require specific infection mitigation strategies

    Identification of the Schistosoma mansoni TNF-Alpha Receptor Gene and the Effect of Human TNF-Alpha on the Parasite Gene Expression Profile

    Get PDF
    Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction

    Gene Ontology annotations and resources.

    Get PDF
    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources
    corecore