81 research outputs found

    Plagioclase Compositions of Eucrites and Eucrite-Type Achondrites

    Get PDF
    Eucrites are basalts, diabases and gabbros composed of ferroan pigeonite and augite, calcic plagioclase, and a silica phase, with accessory amounts of ilmenite, chromite, Ca-phosphate, troilite, metal and olivine. Many of the gabbroic-textured eucrites are cumulates from a mafic magma, while most other eucrites are close to melt compositions. These are referred to as cumulate and basaltic eucrites. Petrologic, compositional and isotopic studies have identified several mafic achondrites with eucritic mineralogy that have anomalous properties, and some of these are considered to have been derived from different parent asteroids than normal eucrites. These are referred to as eucrite-type achondrites, and they include cumulate and basaltic types. Petrologic studies of eucrites often concentrate on pyroxene compositions to reveal the petrogenetic history of the rocks and plagioclase compositions are less utilized. Here I examine Na and K variations of a suite of basaltic and cumulate eucrites and eucrite-type achondrites

    Thermal Evolution and Core Formation on Asteroid 4 Vesta in the Magma Ocean Regime

    Get PDF
    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASAs Dawn spacecraft while orbiting asteroid 4 Vesta, indicate that Vesta has differentiated to form a crust, mantle, and core. Eucrite and diogenite petrology is best explained by solidification of the crust from a magma ocean constituting 60-70% of Vestas silicates [3], or a temperature of ~1550 C. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite formation and likely reached a temperature of 1450- 1575 C. These observations provide important constraints on Vestas thermal evolution. The high inferred temperature indicates that convective heat transport must have been important during part of Vestas thermal evolution. In this study, we model Vestas thermal evolution in the magma ocean regime

    Mars Sample Return from Meridiani Planum

    Get PDF
    The NASA Mars Exploration Program has four main goals: (i) determine if life ever arose there, (ii) understand the processes and history of its climate, (iii) determine the evolution of its surface and interior, and (iv) prepare for human exploration of Mars. These goals are embodied in the NASA Mars exploration strategy Follow the Water. Current Mars exploration tactics for lander missions build on knowledge gained by prior orbital investigations; the science rationale for choosing landing sites is based on the current best interpretation of the geology. A future Mars sample return mission will greatly exceed in cost typical lander missions because of the need to design for return to Earth and the infrastructure needed on Earth to curate and process the samples safely and cleanly. Because of this added cost burden, expectations for science return are higher. There must be some prospect that the returned samples will allow for testing higher level hypotheses relevant to NASA's goals. Site selection must be based on knowledge gained from prior in situ measurements to enhance the prospects for successfully meeting these goals. I will argue that Meridiani Planum should be that site

    Igneous fractionation and subsolidus equilibration of diogenite meteorites

    Get PDF
    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning

    Ibitira: A basaltic achondrite from a distinct parent asteroid

    Get PDF
    I have done detailed petrologic study of Ibitira, nominally classified as a basaltic eucrite. The Fe/Mn ratio of Ibitira pyroxenes with <10 mole % wollastonite component is 36.4 0.4, and is well-resolved from those of five basaltic eucrites studied for comparison; 31.2-32.2. Data for the latter completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes. Thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust

    Geologic History of Asteroid 4 Vesta

    Get PDF
    Some types of meteorites - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where magmatism occurred within a very few million years of the formation of the earliest solids in the solar system. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid]. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are basalts, diabases and cumulate gabbros from the upper crust. Howardites are impact-engendered breccias mostly of diogenites and eucrites. There remains only one large asteroid with a basaltic crust, 4 Vesta, which is thought to be the source of the HED clan. Differentiation models for Vesta are based on HED compositions. Proto-Vesta consisted of chondritic materials containing Al-26, a potent, short-lived heat source. Inferences from compositional data are that Vesta was melted to high degree (50%) allowing homogenization of the silicate phase and separation of a metallic core. Convection of the silicate magma ocean allowed equilibrium crystallization, forming a harzburgitic mantle. After convective lockup occurred, melt collected between the mantle and the cool thermal boundary layer and underwent fractional crystallization forming an orthopyroxene-rich (diogenite) lower crust. The initial thermal boundary layer of chondritic material was replaced by a mafic upper crust through impact disruption and foundering. The mafic crust thickened over time as additional residual magma intrudes and penetrates the mafic crust forming plutons, dikes, sills and flows of cumulate and basaltic eucrite composition. This magmatic history may have taken only 2-3 Myr. This magma ocean scenario is at odds with a model of heat and magma transport that indicates that small degrees of melt would be rapidly expelled from source regions, precluding development of a magma ocean. Constraints from radiogenic Mg-26 distibutions suggest that the parent asteroid of HEDs was much smaller than Vesta. Thus, first-order questions regarding asteroid differentiation remain

    Evidence for a Single Ureilite Parent Asteroid from a Petrologic Study of Polymict Ureilites

    Get PDF
    Ureilites are ultramafic achondrites composed of olivine and pyroxene, with minor elemental C, mostly as graphite [1]. The silicate composition indicates loss of a basaltic component through igneous processing, yet the suite is very heterogeneous in O isotopic composition inherited from nebular processes [2]. Because of this, it has not yet been established whether ureilites were derived from a single parent asteroid or from multiple parents. Most researchers tacitly assume a single parent asteroid, but the wide variation in mineral and oxygen isotope compositions could be readily explained by an origin in multiple parent asteroids that had experienced a similar evolution. Numerous ureilite meteorites have been found in Antarctica, among them several that are clearly paired (Fig. 1) and two that are strongly brecciated (EET 83309, EET 87720). We have begun a detailed petrologic study of these latter two samples in order to characterize the range of materials in them. One goal is to attempt to determine whether ureilites were derived from a single parent asteroid

    Processes in Early Planetesimals: Evidence from Ureilite Meteorites

    Get PDF
    Ureilites are primitive ultramafic achondrites composed largely of olivine and pigeonite, with minor augite, carbon, sulphide and metal. They represent very early material in the history of the Solar System and form a bridge between undifferentiated chondrites and fully differentiated asteroids. They show a mixture of chemical characteristics, some of which are considered to be nebula-derived (e.g. a negative correlation between Mg/Fe and Delta O-17 that resembles that of the ordinary chondrites but at lower Delta O-17 values) whereas others have been imposed by asteroidal differentiation. Carbon isotope data show a striking negative correlation of delta C-13 values with mg# in olivine. delta C-13 also correlates positively with Delta O-17, and therefore this isotopic variation was probably also nebula-derived. Thus, oxygen and carbon isotope compositions and Fe-Mg systematics of each monomict ureilite were established before differentiation processes began. Heated by decay of short-lived radioactive isotopes, the ureilite asteroid started to melt. Metal and sulphide would have melted first, forming a Fe-S eutectic liquid, which removed chalcophile elements and incompatible siderophile elements, and basaltic melts that removed Al, Ca and the LREE. Several elements show different abundances and/or correlations with Fo content in olivine, e.g. carbon shows a positive correlation in ferroan ureilites, and a weak or even negative correlation in more magnesian compositions. HSE such as Os and Ir also show different distributions, i.e. ureilites with Fo 82 tend to have much less scattered and overall lower Os and Ir abundances. A similar change in elemental behaviour is shown by the Fe-Mn relations in ureilitic olivines: those with Fo contents 85 show much greater scatter. This suggests that a major change affected the parent body at a time when melting had reached relatively magnesian bulk compositions. We consider that this event may have been a hit and run collision in which the ureilite parent body collided with a larger object. During the collision, the ureilite mantle broke up catastrophically but re-accreted in a jumbled state around the still-intact core. Mg-rich basaltic melts that were in the process of being formed at the time of break-up were retained in part as melt clasts that re-accreted to the regolith and are found in polymict ureilites
    corecore