5 research outputs found
The Comprehensive AO CMF Classification System for Mandibular Fractures: A Multicenter Validation Study
The AO CMF has recently launched the first comprehensive classification system for craniomaxillofacial (CMF) fractures. The AO CMF classification system uses a hierarchical framework with three levels of growing complexity (levels 1, 2, and 3). Level 1 of the system identifies the presence of fractures in four anatomic areas (mandible, midface, skull base, and cranial vault). Level 2 variables describe the location of the fractures within those defined areas. Level 3 variables describe details of fracture morphology such as fragmentation, displacement, and dislocation. This multiplanar radiographic image-based AO CMF trauma classification system is constantly evolving and beginning to enter worldwide application. A validation of the system is mandatory prior to a reliable communication and data processing in clinical and research environments. This interobserver reliability and accuracy study is aiming to validate the three current modules of the AO CMF classification system for mandible trauma in adults. To assess the performance of the system at the different precision levels, it focuses on the fracture location within the mandibular regions and condylar process subregions as core components giving only secondary attention to morphologic variables. A total of 15 subjects individually assigned the location and features of mandibular fractures in 200 CT scans using the AO CMF classification system. The results of these ratings were then statistically evaluated for interobserver reliability by Fleiss' kappa and accuracy by percentage agreement with an experienced reference assessor. The scores were used to determine if the variables of levels 2 and 3 were appropriate tools for valid classification. Interobserver reliability and accuracy were compared by hierarchy of variables (level 2 vs. level 3), by anatomical region and subregion, and by assessor experience level using Kruskal-Wallis and Wilcoxon's rank-sum tests. The AO CMF classification system was determined to be reliable and accurate for classifying mandibular fractures for most levels 2 and 3 variables. Level 2 variables had significantly higher interobserver reliability than level 3 variables (median kappa: 0.69 vs. 0.59,; p; < 0.001) as well as higher accuracy (median agreement: 94 vs. 91%,; p; < 0.001). Accuracy was adequate for most variables, but lower reliability was observed for condylar head fractures, fragmentation of condylar neck fractures, displacement types and direction of the condylar process overall, as well as the condylar neck and base fractures. Assessors with more clinical experience demonstrated higher reliability (median kappa high experience 0.66 vs. medium 0.59 vs. low 0.48,; p; < 0.001). Assessors with experience using the classification software also had higher reliability than their less experienced counterparts (median kappa: 0.76 vs. 0.57,; p; < 0.001). At present, the AO CMF classification system for mandibular fractures is suited for both clinical and research settings for level 2 variables. Accuracy and reliability decrease for level 3 variables specifically concerning fractures and displacement of condylar process fractures. This will require further investigation into why these fractures were characterized unreliably, which would guide modifications of the system and future instructions for its usage
Virtual Surgical Planning Decreases Operative Time for Isolated Single Suture and Multi-suture Craniosynostosis Repair
Background:. Cranial vault reconstruction is a complex procedure due to the need for precise 3-dimensional outcomes. Traditionally, the process involves manual bending of calvarial bone and plates. With the advent of virtual surgical planning (VSP), this procedure can be streamlined. Despite the advantages documented in the literature, there have been no case-control studies comparing VSP to traditional open cranial vault reconstruction.
Methods:. Data were retrospectively collected on patients who underwent craniosynostosis repair during a 7-year period. Information was collected on patient demographics, intraoperative and postoperative factors, and intraoperative surgical time. High-resolution computed tomography scans were used for preoperative planning with engineers when designing osteotomies, bone flaps, and final positioning guides.
Results:. A total of 66 patients underwent open craniosynostosis reconstruction between 2010 and 2017. There were 35 control (non-VSP) and 28 VSP cases. No difference in age, gender ratios, or number of prior operations was found. Blood loss was similar between the 2 groups. The VSP group had more screws and an increased length of postoperative hospital stay. The length of the operation was shorter in the VSP group for single suture and for multiple suture operations. Operative time decreased as the attending surgeon increased familiarity with the technique.
Conclusions:. VSP is a valuable tool for craniosynostosis repair. We found VSP decreases surgical time and allows for improved preoperative planning. Although there have been studies on VSP, this is the first large case-control study to be performed on its use in cranial vault remodeling