8 research outputs found

    The Effects of Restricting Nitrogen, Phosphorus, and Potassium Fertilizers on Erianthus (\u3cem\u3eErianthus arundinaceus\u3c/em\u3e) Growth and Nutrient Contents

    Get PDF
    Low inputs and sustainability are the major concerns in bioenergy crop production (Reijnders 2006). Erianthus spp. is a relative of sugarcane and is a perennial crop with high dry matter production (Matsuo et al. 2003). It is expected to become a cellulosic bioenergy crop. However, its fertilizer requirements are still unknown because erianthus has a highly developed root system (Matsuo et al. 2003), and appears to absorb nutrients from the subsoil layer, which is hardly used by other crops. Therefore, it is necessary to experimentally restrict fertilizer application and maintain the rhizosphere to clarify the fertilizer requirements. In this study, we grew Erianthus (Erianthus arundinaceus) in pots and restricted nitrogen (N), phosphorus (P), and potassium (K) fertilizer application to evaluate the fertilizer requirements

    Comparison of Biomass Productivity and Its Persistency among Four Perennial Grasses for Bioenergy Feedstock Production in Temperate Region of Japan

    Get PDF
    The present study was the first report of comparison of above ground biomass yield and its persistence among several bioenergy crops in a temperate zone of eastern Asia

    Mapping candidate QTLs related to plant persistency in red clover

    Get PDF
    Red clover (Trifolium pratense L.) is a diploid (2n = 14), self-incompatible legume that is widely cultivated as a forage legume in cold geographical regions. Because it is a short-lived perennial species, improvement of plant persistency is the most important objective for red clover breeding. To develop a marker-assisted selection (MAS) approach for red clover, we identified candidate QTLs related to plant persistency. Two full-sib mapping populations, 272 × WF1680 and HR × R130, were used for QTL identification. Resistance to Sclerotinia trifoliorum and Fusarium species, as well as to winter hardiness, was investigated in the laboratory and in field experiments in Moscow region (Russia), and Sapporo (Japan). With the genotype data derived from microsatellite and other DNA markers, candidate QTLs were identified by simple interval mapping (SIM), Kruskal–Wallis analysis (KW analysis) and genotype matrix mapping (GMM). A total of 10 and 23 candidate QTL regions for plant persistency were identified in the 272 × WF1680 and the HR × R130 mapping populations, respectively. The QTLs identified by multiple mapping approaches were mapped on linkage group (LG) 3 and LG6. The significant QTL interactions identified by GMM explained the higher phenotypic variation than single effect QTLs. Identification of haplotypes having positive effect QTLs in each parent were first demonstrated in this study for pseudo-testcross mapping populations in plant species using experimental data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-009-1253-5) contains supplementary material, which is available to authorized users

    Root-shoot relationships in four strains of field-grown Erianthus arundinaceus at seedling stage

    No full text
    The production of cellulosic bioethanol from non-edible plants is a potential countermeasure against global warming. Erianthus species provide cellulosic raw material for bioethanol because they have high biomass productivity and high tolerance to environmental stress, associated with their large, deep root systems. However, it is difficult to select Erianthus species for breeding by direct observation of their root systems because the roots are widely dispersed in the soil. Instead, we examined shoot morphological traits that could be closely related to root morphology to find effective reference indices for selection. The potential to evaluate root structure and function in Erianthus according to bleeding rate was also examined. An analysis of root–shoot relationships in seedlings indicated that root number and mean length were closely related to stem number and diameter, respectively. These results suggest that root–shoot relationships may provide useful criteria for selective breeding of root systems in Erianthus
    corecore