19 research outputs found

    State of the Climate in 2016

    Get PDF

    Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels

    Get PDF
    Two of the most important topics in Sea Level Science are addressed in this paper. One is concerned with the evidence for the apparent acceleration in the rate of global sea level change between the 19th and 20th centuries and, thereby, with the question of whether the 20th century sea level rise was a consequence of an accelerated climate change of anthropogenic origin. An acceleration is indeed observed in both tide gauge and saltmarsh data at different locations around the world, yielding quadratic coefficients ‘c’ of order 0.005 mm/year2 , and with the most rapid changes of rate of sea level rise occurring around the end of the 19th century. The second topic refers to whether there is evidence that extreme sea levels have increased in recent decades at rates significantly different from those in mean levels. Recent results, which suggest that at most locations rates of change of extreme and mean sea levels are comparable, are presented. In addition, a short review is given of recent work on extreme sea levels by other authors. This body of work, which is focused primarily on Europe and the Mediterranean, also tends to support mean and extreme sea levels changing at similar rates at most location

    Evaluation of Global Ocean Data Assimilation Experiment Products on South Florida Nested Simulations with the Hybrid Coordinate Ocean Model

    No full text
    The South Florida Hybrid Coordinate Ocean Model (SoFLA-HYCOM) encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne Bay) and deep regions (the Straits of Florida), including Marine Protected Areas (the Florida Keys Marine Sanctuary and the Dry Tortugas Ecological Reserve). The presence of the strong Loop Current/Florida Current system and associated eddies connects the local and basin-wide dynamics. A multi-nested approach has been developed to ensure resolution of coastal-scale processes and proper interaction with the large scale flows. The simulations are free running and effects of data assimilation are introduced through boundary conditions derived from Global Ocean Data Assimilation Experiment products. The study evaluates the effects of boundary conditions on the successful hindcasting of circulation patterns by a nested model, applied on a dynamically and topographically complex shelf area. Independent (not assimilated) observations are employed for a quantitative validation of the numerical results. The discussion of the prevailing dynamics that are revealed in both modeled and observed patterns suggests the importance of topography resolution and local forcing on the inner shelf to middle shelf areas, while large scale processes are found to dominate the outer shelf flows. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and proximity to a large scale current system requires a dynamical downscaling approach, with simulations that are nested in a hierarchy of data assimilative outer models
    corecore