237 research outputs found

    The Ginzburg regime and its effects on topological defect formation

    Get PDF
    The Ginzburg temperature has historically been proposed as the energy scale of formation of topological defects at a second order symmetry breaking phase transition. More recently alternative proposals which compute the time of formation of defects from the critical dynamics of the system, have been gaining both theoretical and experimental support. We investigate, using a canonical model for string formation, how these two pictures compare. In particular we show that prolonged exposure of a critical field configuration to the Ginzburg regime results in no substantial suppression of the final density of defects formed. These results dismiss the recently proposed role of the Ginzburg regime in explaining the absence of topological defects in 4He pressure quench experiments.Comment: 8 pages, 5 ps figure

    Structural identifiability of surface binding reactions involving heterogeneous analyte : application to surface plasmon resonance experiments

    Get PDF
    Binding affinities are useful measures of target interaction and have an important role in understanding biochemical reactions that involve binding mechanisms. Surface plasmon resonance (SPR) provides convenient real-time measurement of the reaction that enables subsequent estimation of the reaction constants necessary to determine binding affinity. Three models are considered for application to SPR experiments—the well mixed Langmuir model and two models that represent the binding reaction in the presence of transport effects. One of these models, the effective rate constant approximation, can be derived from the other by applying a quasi-steady state assumption. Uniqueness of the reaction constants with respect to SPR measurements is considered via a structural identifiability analysis. It is shown that the models are structurally unidentifiable unless the sample concentration is known. The models are also considered for analytes with heterogeneity in the binding kinetics. This heterogeneity further confounds the identifiability of key parameters necessary for reliable estimation of the binding affinit

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    High Pressure Thermoelasticity of Body-centered Cubic Tantalum

    Full text link
    We have investigated the thermoelasticity of body-centered cubic (bcc) tantalum from first principles by using the linearized augmented plane wave (LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and temperatures up to 10000 K. Electronic excitation contributions to the free energy were included from the band structures, and phonon contributions were included using the particle-in-a-cell (PIC) model. The computed elastic constants agree well with available ultrasonic and diamond anvil cell data at low pressures, and shock data at high pressures. The shear modulus c44c_{44} and the anisotropy change behavior with increasing pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review

    Oregon 2100: Projected Climatic and Ecological Changes

    Get PDF
    28 pagesGreenhouse climatic warming is underway and exacerbated by human activities. Future outcomes of these processes can be projected using computer models checked against climatic changes during comparable past atmospheric compositions. This study gives concise quantitative predictions for future climate, landscapes, soils, vegetation, and marine and terrestrial animals of Oregon. Fossil fuel burning and other human activities by the year 2100 are projected to yield atmospheric CO2 levels of about 600-850 ppm (SRES A1B and B1), well above current levels of 400 ppm and preindustrial levels of 280 ppm. Such a greenhouse climate was last recorded in Oregon during the middle Miocene, some 16 million years ago. Oregon’s future may be guided by fossil records of the middle Miocene, as well as ongoing studies on the environmental tolerances of Oregon plants and animals, and experiments on the biological effects of global warming. As carbon dioxide levels increase, Oregon’s climate will move toward warm temperate, humid in the west and semiarid to subhumid to the east, with increased summer and winter drought in the west. Western Oregon lowlands will become less suitable for temperate fruits and nuts and Pinot Noir grapes, but its hills will remain a productive softwood forest resource. Improved pasture and winter wheat crops will become more widespread in eastern Oregon. Tsunamis and stronger storms will exacerbate marine erosion along the Oregon Coast, with significant damage to coastal properties and cultural resource

    The CLIMPACTS synthesis report: An assessment of the effects of climate change and variation in New Zealand using the CLIMPACTS system

    Get PDF
    In the late 1980s, New Zealand undertook the first national assessment of climate change and its possible impacts on the country.The landmark report, reflecting the judgement of scores of national experts, called for greater efforts in building the national research capacity in order to better quantify the range of impacts that could occur in New Zealand from climate change and variability. In response, the collaborative CLIMPACTS Programme was established to provide this capacity. Ten years on from the first national assessment, the present synthesis offers some results from, as well as a demonstration of, the capacity developed by the CLIMPACTS Programme. The purpose of the present document is to provide a summary report from the CLIMPACTS Programme on climate change and its effects on New Zealand.The chapters and their contents are not comprehensive. Rather, they are focused on a specific set of questions, which conform to the particular expertise of the CLIMPACTS Programme members and which employ a limited set of the wide range of tools available within the CLIMPACTS Model. Other important areas such as forests, indigenous ecosystems and pests and diseases are not yet covered

    Recent advances in β-decay spectroscopy at CARIBU

    Get PDF
    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri

    Applied aspects of pineapple flowering

    Full text link
    corecore