203 research outputs found

    Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells : Spectroscopic experiment versus 10-band k.p modeling

    Get PDF
    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 m(o) in QWs with 1.2% N and 0.15 m(o) for the case of larger N content of 2.2%.Publisher PDFPeer reviewe

    Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    Get PDF
    We present experimental and theoretical investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer a widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 {\mu}m. By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.Comment: 11 pages, 8 figure

    Optical and electronic properties of GaAs-based structures with columnar quantum dots

    Get PDF
    The electronic properties of a structure with columnar quantum dots obtained by close stacking of InAs submonolayers were studied by contactless electroreflectance (CER) and photoluminescence. These dots have an almost ideally rectangular cross section and uniform compn., which is promising for polarization independent gain. After energy level calcns. in the effective mass approxn. using compn. profiles obtained from cross-sectional TEM the part of the CER spectrum related to the 2-dimensional surrounding layer was explained and single heavy-hole-like and light-hole-like transitions related to the columnar dots identified, due to a single electron state confined in a shallow in-plane potential. [on SciFinder (R)

    Room temperature carrier kinetics in the W-type GaInAsSb/InAs/AlSb quantum well structure emitting in mid-infrared spectral range

    Get PDF
    Room temperature carrier kinetics has been investigated in the type-II W-design AlSb/InAs/Ga0:80In0:20As0:15Sb0:85/InAs/AlSb quantum well emitting in the mid-infrared spectral range (at 2.54 μm). A timeresolved reflectance technique, employing the non-degenerated pump-probe scheme, has been used as a main experimental tool. Based on that, a primary carrier relaxation time of 2:3 ± 0:2 ps has been found, and attributed to the initial carrier cooling process within the quantum well states, while going towards the ground state via the carrier-optical phonon scattering mechanism. The decay of a quasi-equilibrium carrier population at the quantum well ground states is primarily governed by two relaxation channels: (i) radiative recombination within distribution of spatially separated electrons and holes that occurs in the nanosecond time scale, and (ii) the hole tunnelling out of its confining potential, characterized by a 240 ± 10 ps time constant.Publisher PD
    corecore