8 research outputs found

    Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors

    Get PDF
    To meet the charging market demands of portable microelectronics, there has been a growing interest in high performance and low-cost microscale energy storage devices with excellent flexibility and cycling durability. Herein, interdigitated all-solid-state flexible asymmetric micro-supercapacitors (A-MSCs) were fabricated by a facile pulse current deposition (PCD) approach. Mesoporous Fe2O3 and MnO2 nanoflakes were functionally coated by electrodeposition on inkjet-printed graphene patterns as negative and positive electrodes, respectively. Our PCD approach shows significantly improved adhesion of nanostructured metal oxide with crack-free and homogeneous features, as compared with other reported electrodeposition approaches. The as-fabricated Fe2O3/MnO2 A-MSCs deliver a high volumetric capacitance of 110.6 F cm(-3) at 5 mu A cm(-2) with a broad operation potential range of 1.6 V in neutral LiCl/PVA solid electrolyte. Furthermore, our A-MSC devices show a long cycle life with a high capacitance retention of 95.7% after 10 000 cycles at 100 mu A cm(-2). Considering its low cost and potential scalability to industrial levels, our PCD technique could be an efficient approach for the fabrication of high-performance MSC devices in the future

    Direct patterning processes for high-performance microsupercapacitors

    No full text
    The surge in miniaturized electronic components driven by the Internet of Things (IoT) has prompted an interest in non-traditional energy storage solutions. For these applications, reduction of size while preserving power and energy densities are of great importance. Within this context, planar microsupercapacitors (MSCs) have emerged as strong candidates for energy storage. Their unique two-dimensional structure, rapid charge-discharge capabilities, high power density, and enduring stability make them highly appealing as power units for on-chip integration. However, the intricate nature of MSC fabrication remains a substantial challenge. Conventionally used indirect patterning processes, such as photolithography, are limiting the implementation of novel functional nanomaterials with high charge storing capacities. As a result, other kinds of direct patterning processes can be used to fabricate state-of-the-art MSCs. Recent studies mainly focused on improving the patterning geometry, minimizing electrode dimensions and narrowing the electrode gap to maintain high resolution of MSCs. However, these efforts were made at the expense of process scalability potential and degree of complexity of the fabrication processes. This thesis aims to develop fabrication process flows with emphasis on simplicity and versatility without sacrificing the possibility for large-scale fabrication of MSCs with high-performance. The first part of this thesis describes the implementation of highly scalable inkjet printing process for fabrication of high-performance MSCs. Typically, inkjet printing can be used to deposit thin films of materials. However, to fabricate MSCs with high-performance, the thickness is a crucial parameter that requires scaling up. The contribution of the first work is dealing with overcoming printing limitations by describing a step-like fabrication process that was developed to overcome the limitations of inkjet printing to increase the thickness of the electrode material, and, therefore its electrochemical performance. The outcome graphene-based solid-state MSCs free from metallic current collector exhibit high areal capacitance of 0.1mF cm−2 and hold promise for on-chip fabrication. In the second work, a facile integration of inkjet printing with an electrodeposition technique is used to fabricate hybrid flexible MSCs based on graphene, Fe2O3, and MnO2 nanomaterials with∌90% capacitance retention after 10 000 charge-discharge cycles. In the second part of this thesis, direct laser writing process is implemented as a viable alternative to fabrication of planar MSCs, based on a variety of highly electrochemically active nanomaterials that are not compatible with inkjet printing. In the third, fourth, and fifth works binder-free ink formulation approaches were developed to fabricate composite nanomaterial films based on graphene, graphene oxide, carbon nanotubes (CNTs), and polyaniline (PANI). Efficient patterning of these films, thanks to the wide range of controls over the laser beam, was realized highlighting the simplicity of the developed fabrication processes for MSCs with high areal capacitance of 172 mF cm−2. Furthermore, it enabled the fabrication of MSCs that can operate in a wide temperature range from 25 to 250 °C. In summary, this thesis reshapes the MSC fabrication process by considering performance, scalability, and process adaptability towards novel functional nanomaterials. These proposed methods are further strengthened by innovative ink formulation strategies using these materials, highlighting their potential applicability in emergent energy storage devices.Ökningen av miniatyriserade elektroniska komponenter som drivs av Internet of Things (IoT) har vĂ€ckt ett intresse för icke-traditionella energilagringslösningar. För dessa applikationer Ă€r det av stor betydelse att reducerad storlek inte sker pĂ„ bekostnad av effekt och energitĂ€thet. Inom detta sammanhang har plana mikrosuperkondensatorer (MSC) dykt upp som starka kandidater för energilagring. Deras unika tvĂ„dimensionella struktur, snabba laddnings- och urladdningsmöjligheter, höga effekttĂ€thet och varaktiga stabilitet gör dem mycket tilltalande som kraftenheter för integration pĂ„ chip. MSC-tillverkningens komplexa natur Ă€r dock fortfarande en stor utmaning. Konventionellt anvĂ€nda indirekta mönstringsprocesser, sĂ„som fotolitografi, begrĂ€nsar implementeringen av nya funktionella nanomaterial med hög kapacitet förladdningslagring. Ett resultat av det Ă€r att andra direkta mönstringsprocesser kan anvĂ€ndas för att tillverka toppmoderna MSC:er. Nyligen genomförda studier har huvudsakligen fokuserat pĂ„ att förbĂ€ttra mönstringsgeometrin: minimera elektroddimensioner och minska elektrodgapet för att bibehĂ„lla hög upplösning av MSC:er. Dessa förbĂ€ttringar gjordes dock pĂ„ bekostnad av processens skalbarhetspotential och ökade graden av komplexitet i tillverkningsprocesserna. Denna avhandling syftar till att utveckla processflöden för tillverkning med betoning pĂ„ enkelhet och mĂ„ngsidighet, utan att offra möjligheten för storskalig tillverkning av MSC:er med hög prestanda. Den första delen av denna avhandling beskriver implementeringen av en mycket skalbar process för blĂ€ckstrĂ„leutskrift för tillverkning av högpresterande MSC:er. Vanligtvis anvĂ€nds blĂ€ckstrĂ„leutskrift för att avsĂ€tta tunna filmer av material. För att tillverka högpresterande MSC:er Ă€r dock tjockleken en avgörande parameter som krĂ€ver uppskalning. Det första arbetet i denna avhandling beskriver en tillverkningsprocess som utvecklades för att överkomma begrĂ€nsningarna med blĂ€ckstrĂ„leutskrift för att öka tjockleken pĂ„ elektrodmaterialet och dĂ€rmed dess elektrokemiska prestanda. Resultatet av grafenbaserade fasta MSC:er fria frĂ„n metallisk strömavtagare uppvisar hög ytkapacitans pĂ„ 0,1 mF cm−2 och har potential för tillverkning pĂ„ chip. I det andra arbetet anvĂ€nds en enkel integration av blĂ€ckstrĂ„leutskriftmed elektroplĂ€tering för att tillverka flexibla hybrid-MSC:er baserade pĂ„ grafen, Fe2O3 och MnO2 nanomaterial med ∌90% bibehĂ„llen kapacitans efter 10 000 laddningscykler. I den andra delen av avhandlingen beskrivs en direkt laserskrivprocess baserad pĂ„ en mĂ€ngd elektrokemiskt högaktiva nanomaterial som inte Ă€r kompatibla med blĂ€ckstrĂ„leutskrift, som ett gĂ„ngbart alternativ till tillverkning av plana MSC. I det tredje, fjĂ€rde och femte arbetet utvecklades metoder med bindemedelsfria blĂ€ckformulae för att tillverka sammansatta nanomaterialfilmer baserade pĂ„ grafen, grafenoxid, kolnanotuber och polianilin. Effektiv mönstring av dessa filmer kunde Ă„stadkommas med hjĂ€lp av laser, vilket lyfter fram enkelheten i de utvecklade tillverkningsprocesserna för MSC:er med hög ytkapacitans pĂ„ 172 mF cm−2. Dessutom möjliggjorde tillverkningen av MSC:er som kan arbeta i ett brett temperaturomrĂ„de pĂ„ 25 till 250 °C. Sammanfattningsvis omformar denna avhandling MSC-tillverkningsprocessen genom att beakta MSC-prestanda, skalbarhet och anpassningsbarhet i processen mot nya funktionella nanomaterial. Dessa metoder förstĂ€rks ytterligare av innovativa blĂ€ckformuleringsstrategier som anvĂ€nder dessa material, vilket framhĂ€ver deras potentiella tillĂ€mpbarhet i nya energilagringsenheter.QC 20230908</p

    Direct patterning processes for high-performance microsupercapacitors

    No full text
    The surge in miniaturized electronic components driven by the Internet of Things (IoT) has prompted an interest in non-traditional energy storage solutions. For these applications, reduction of size while preserving power and energy densities are of great importance. Within this context, planar microsupercapacitors (MSCs) have emerged as strong candidates for energy storage. Their unique two-dimensional structure, rapid charge-discharge capabilities, high power density, and enduring stability make them highly appealing as power units for on-chip integration. However, the intricate nature of MSC fabrication remains a substantial challenge. Conventionally used indirect patterning processes, such as photolithography, are limiting the implementation of novel functional nanomaterials with high charge storing capacities. As a result, other kinds of direct patterning processes can be used to fabricate state-of-the-art MSCs. Recent studies mainly focused on improving the patterning geometry, minimizing electrode dimensions and narrowing the electrode gap to maintain high resolution of MSCs. However, these efforts were made at the expense of process scalability potential and degree of complexity of the fabrication processes. This thesis aims to develop fabrication process flows with emphasis on simplicity and versatility without sacrificing the possibility for large-scale fabrication of MSCs with high-performance. The first part of this thesis describes the implementation of highly scalable inkjet printing process for fabrication of high-performance MSCs. Typically, inkjet printing can be used to deposit thin films of materials. However, to fabricate MSCs with high-performance, the thickness is a crucial parameter that requires scaling up. The contribution of the first work is dealing with overcoming printing limitations by describing a step-like fabrication process that was developed to overcome the limitations of inkjet printing to increase the thickness of the electrode material, and, therefore its electrochemical performance. The outcome graphene-based solid-state MSCs free from metallic current collector exhibit high areal capacitance of 0.1mF cm−2 and hold promise for on-chip fabrication. In the second work, a facile integration of inkjet printing with an electrodeposition technique is used to fabricate hybrid flexible MSCs based on graphene, Fe2O3, and MnO2 nanomaterials with∌90% capacitance retention after 10 000 charge-discharge cycles. In the second part of this thesis, direct laser writing process is implemented as a viable alternative to fabrication of planar MSCs, based on a variety of highly electrochemically active nanomaterials that are not compatible with inkjet printing. In the third, fourth, and fifth works binder-free ink formulation approaches were developed to fabricate composite nanomaterial films based on graphene, graphene oxide, carbon nanotubes (CNTs), and polyaniline (PANI). Efficient patterning of these films, thanks to the wide range of controls over the laser beam, was realized highlighting the simplicity of the developed fabrication processes for MSCs with high areal capacitance of 172 mF cm−2. Furthermore, it enabled the fabrication of MSCs that can operate in a wide temperature range from 25 to 250 °C. In summary, this thesis reshapes the MSC fabrication process by considering performance, scalability, and process adaptability towards novel functional nanomaterials. These proposed methods are further strengthened by innovative ink formulation strategies using these materials, highlighting their potential applicability in emergent energy storage devices.Ökningen av miniatyriserade elektroniska komponenter som drivs av Internet of Things (IoT) har vĂ€ckt ett intresse för icke-traditionella energilagringslösningar. För dessa applikationer Ă€r det av stor betydelse att reducerad storlek inte sker pĂ„ bekostnad av effekt och energitĂ€thet. Inom detta sammanhang har plana mikrosuperkondensatorer (MSC) dykt upp som starka kandidater för energilagring. Deras unika tvĂ„dimensionella struktur, snabba laddnings- och urladdningsmöjligheter, höga effekttĂ€thet och varaktiga stabilitet gör dem mycket tilltalande som kraftenheter för integration pĂ„ chip. MSC-tillverkningens komplexa natur Ă€r dock fortfarande en stor utmaning. Konventionellt anvĂ€nda indirekta mönstringsprocesser, sĂ„som fotolitografi, begrĂ€nsar implementeringen av nya funktionella nanomaterial med hög kapacitet förladdningslagring. Ett resultat av det Ă€r att andra direkta mönstringsprocesser kan anvĂ€ndas för att tillverka toppmoderna MSC:er. Nyligen genomförda studier har huvudsakligen fokuserat pĂ„ att förbĂ€ttra mönstringsgeometrin: minimera elektroddimensioner och minska elektrodgapet för att bibehĂ„lla hög upplösning av MSC:er. Dessa förbĂ€ttringar gjordes dock pĂ„ bekostnad av processens skalbarhetspotential och ökade graden av komplexitet i tillverkningsprocesserna. Denna avhandling syftar till att utveckla processflöden för tillverkning med betoning pĂ„ enkelhet och mĂ„ngsidighet, utan att offra möjligheten för storskalig tillverkning av MSC:er med hög prestanda. Den första delen av denna avhandling beskriver implementeringen av en mycket skalbar process för blĂ€ckstrĂ„leutskrift för tillverkning av högpresterande MSC:er. Vanligtvis anvĂ€nds blĂ€ckstrĂ„leutskrift för att avsĂ€tta tunna filmer av material. För att tillverka högpresterande MSC:er Ă€r dock tjockleken en avgörande parameter som krĂ€ver uppskalning. Det första arbetet i denna avhandling beskriver en tillverkningsprocess som utvecklades för att överkomma begrĂ€nsningarna med blĂ€ckstrĂ„leutskrift för att öka tjockleken pĂ„ elektrodmaterialet och dĂ€rmed dess elektrokemiska prestanda. Resultatet av grafenbaserade fasta MSC:er fria frĂ„n metallisk strömavtagare uppvisar hög ytkapacitans pĂ„ 0,1 mF cm−2 och har potential för tillverkning pĂ„ chip. I det andra arbetet anvĂ€nds en enkel integration av blĂ€ckstrĂ„leutskriftmed elektroplĂ€tering för att tillverka flexibla hybrid-MSC:er baserade pĂ„ grafen, Fe2O3 och MnO2 nanomaterial med ∌90% bibehĂ„llen kapacitans efter 10 000 laddningscykler. I den andra delen av avhandlingen beskrivs en direkt laserskrivprocess baserad pĂ„ en mĂ€ngd elektrokemiskt högaktiva nanomaterial som inte Ă€r kompatibla med blĂ€ckstrĂ„leutskrift, som ett gĂ„ngbart alternativ till tillverkning av plana MSC. I det tredje, fjĂ€rde och femte arbetet utvecklades metoder med bindemedelsfria blĂ€ckformulae för att tillverka sammansatta nanomaterialfilmer baserade pĂ„ grafen, grafenoxid, kolnanotuber och polianilin. Effektiv mönstring av dessa filmer kunde Ă„stadkommas med hjĂ€lp av laser, vilket lyfter fram enkelheten i de utvecklade tillverkningsprocesserna för MSC:er med hög ytkapacitans pĂ„ 172 mF cm−2. Dessutom möjliggjorde tillverkningen av MSC:er som kan arbeta i ett brett temperaturomrĂ„de pĂ„ 25 till 250 °C. Sammanfattningsvis omformar denna avhandling MSC-tillverkningsprocessen genom att beakta MSC-prestanda, skalbarhet och anpassningsbarhet i processen mot nya funktionella nanomaterial. Dessa metoder förstĂ€rks ytterligare av innovativa blĂ€ckformuleringsstrategier som anvĂ€nder dessa material, vilket framhĂ€ver deras potentiella tillĂ€mpbarhet i nya energilagringsenheter.QC 20230908</p

    All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    No full text
    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm(2) and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.QC 20161031</p

    Facile fabrication of graphene-based highperformance microsupercapacitors operating ata high temperature of 150C

    No full text
    Many industry applications require electronic circuits and systems to operate at high temperatures over 150 °C. Although planar microsupercapacitors (MSCs) have great potential for miniaturized on-chip integrated energy storage components, most of the present devices can only operate at low temperatures (&lt;100 °C). In this work, we have demonstrated a facile process to fabricate activated graphene-based MSCs that can work at temperatures as high as 150 °C with high areal capacitance over 10 mF cm−2 and good cycling performance. Remarkably, the devices exhibit no capacitance degradation during temperature cycling between 25 °C and 150 °C, thanks to the thermal stability of the active components

    Mass Transport Behaviors in Graphene and Polyaniline Heterostructure-Based Microsupercapacitors

    No full text
    The development of miniaturized energy storage components with high areal performance for emerging electronics depends on scalable fabrication techniques for thick electrodes and an in-depth understanding of the intrinsic properties of materials. Based on the coprecipitation behavior of electrically exfoliated graphene and reduced graphene oxide–templated polyaniline (PANi) nanoflake, this work develops a simple, green, low-cost, and scalable drop-casted technique to easily fabricate uniform thick electrodes (up to 80 ÎŒm) on various substrates. Through using a direct laser writing process, planar microsupercapacitors can be readily attained. As-fabricated flexible all-solid-state microsupercapacitors exhibit an ultrahigh areal capacitance of 172 mF cm−2 at 0.1 A cm−2 and excellent cycling stability of 91% capacitance retention over 2000 cycles at a high current density of 1.0 A cm−2. Furthermore, based on the electrochemical quartz crystal microbalance research result, the pseudocapacitance contribution is mostly provided by the adsorption/desorption of SO42− anions during the protonation process of PANi. This work offers a simple strategy toward superior-performance micro-sized energy devices and a new perspective to understand the origin of the capacitance of composites and heterostructures.QC 20230907</p

    Microsupercapacitors Working at 250 \ub0C

    No full text
    The raised demand for portable electronics in high-temperature environments (&gt;150 \ub0C) stimulates the search for solutions to release the temperature constraints of power supply. All-solid-state microsupercapacitors (MSCs) are envisioned as promising on-chip power supply components, but at present, nearly none of them can work at temperature over 200 \ub0C, mainly restricted by the electrolytes which possess either low thermal stability or incompatible fabrication process with on-chip integration. In this work, we have developed a novel process to fabricate highly thermally stable ionic liquid/ceramic composite electrolytes for on-chip integrated MSCs. Remarkably, the electrolytes enable MSCs with graphene-based electrodes to operate at temperatures as high as 250 \ub0C with a high areal capacitance (~72 mF cm−2 at 5 mV s−1) and good cycling stability (70 % capacitance retention after 1000 cycles at 1.4 mA cm−2)
    corecore