35 research outputs found

    A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization

    Get PDF
    The development of a single-fluid solver supporting phase-change and able to capture the evolution of three fluids, two of which are miscible, into the sharp interface capturing Volume of Fluid (VOF) approximation, is presented. The transport of each phase-fraction is solved independently by a flux-corrected transport method to ensure the boundedness of the void fraction over the domain. The closure of the system of equations is achieved by a cavitation model, that handles the phase change between the liquid and the fuel vapor and it also accounts for the interaction with the non-condensable gases. Boundedness and conservativeness of the solver in the transport of the volume fraction are verified on two numerical benchmarks: a two-dimensional bubble rising in a liquid column and a cavitating/condensing liquid column. Finally, numerical predictions from large-eddy simulations are compared against experimental results available from literature; in particular, validation against high-speed camera visualizations and Laser Doppler Velocimetry (LDV) measurements of cavitating microscopic in-nozzle flows in a fuel injector is reported

    Pulsed Flow Turbine Design Recommendations

    Get PDF
    A preliminary analysis of turbine design, fit for pulsed flow, is proposed in this paper. It focuses on an academic 2D configuration using inviscid flows, since pressure loads due to wave propagation are several orders of magnitude higher than friction and viscous effects do not significantly impinge on the inviscid part, as previously shown by Hermet, 2021. As such, a large parametric study was carried out using the design of experiments methodology. A performance indicator adapted to unsteady environment is carefully defined before detailing the factors chosen for the design of experiments. Since the number of factors is substantial, a screening design to identify the factors influence on the output is first established. The non-influential factors are then omitted in a more quantitative study of the output law. The surface response calculation allows determining the factor level favouring the best output. Consequently, the main trends in the turbine design driven by a pulsed flow can be stated

    On the properties of high-order least-squares finite-volume schemes

    Get PDF
    High-order finite-volume schemes based on polynomial least-squares methods are an active research topic for the discretization of hyperbolic equations as they allow to obtain high-order spatial discretization schemes in arbitrary meshes. However, few studies have analyzed their performance in good-quality/near-to-uniform meshes, which are commonly used as a meshing strategy in zones where turbulent effects are important. In this paper, the theoretical numerical properties of commonly used least-squares (LSQ) k-exact high-order finite volume schemes are studied in one-dimensional and in several two- dimensional meshes (with some remarks regarding their properties in three-dimensional meshes). These results are compared to those obtained using fully-constrained polynomial reconstructions only compatible with structured meshes. The numerical properties of the schemes are investigated through the von Neumann analysis methodology applied to the one-dimensional and two-dimensional finite volume formulation, including temporal discretization errors. This analysis is also extended to non-uniform and unstructured two- dimensional meshes. At last, the schemes are tested with several numerical experiments using the linear advection, the Euler equations and the Navier-Stokes equations. The analysis of both studies yields similar conclusions regarding the numerical errors and stability of the different studied schemes showing that the high-order least-squares finite volume schemes yield stable and robust results across different uniform and non-uniform unstructured meshes. However, their performance is heavily degraded in simulations with low mesh resolution compared to schemes specially catered to structured meshes. On the other hand, the latter schemes lack stability and robustness in general structured meshes and its formulation cannot be straightforwardly extended to unstructured meshes. Moreover, this work shows that the use of weighted-LSQ can drastically improve the results of LSQ schemes in under-resolved simulations

    African Linguistics in Central and Eastern Europe, and in the Nordic Countries

    Get PDF
    Non peer reviewe

    Étude des gĂšnes impliquĂ©s dans les premiĂšres Ă©tapes de la diffĂ©renciation neuronale des cellules P19

    No full text
    Dans le but d'acquĂ©rir de nouvelles connaissances sur les gĂšnes impliquĂ©s dans la diffĂ©renciation neuronale, un systĂšme a Ă©tĂ© mis en place afin de fournir des donnĂ©es par rapport aux premiĂšres Ă©tapes de cette diffĂ©renciation. Des cellules de carcinome embryonnaire de souris appelĂ©es P19 ont Ă©tĂ© utilisĂ©es pour leur particularitĂ© Ă  se diffĂ©rencier en cellules nerveuses suite Ă  des traitements Ă  l'acide rĂ©tinoĂŻque. Il a Ă©tĂ© dĂ©montrĂ© que ces cellules n'ont besoin que de 48h de traitement pour avoir l'information nĂ©cessaire afin de mener Ă  terme leur diffĂ©renciation en neurones. En isolant PARN de ces cellules en diffĂ©renciation dans les premiĂšres heures de traitements, nous pensons ĂȘtre en mesure de voir des diffĂ©rences dans la composition des transcrits dans le temps et ainsi identifier les gĂšnes qui sont rĂ©gulĂ©s ou qui rĂ©gulent la diffĂ©renciation. Nous avons hybridĂ© ces ARN isolĂ©s de cellules traitĂ©es et non-traitĂ©es Ă  l'acide rĂ©tinoĂŻque avec des micro-puces Ă  ADN d'Affymetrix contenant toutes les sĂ©quences codantes du gĂ©nome de la souris. Ces puces nous ont fourni de nombreuses informations que nous avons triĂ©es par un calcul de SCORE visant Ă  donner une valeur numĂ©rique Ă©levĂ©e aux gĂšnes ayant une expression Ă©levĂ©e en prĂ©sence d'acide rĂ©tinoĂŻque et une valeur numĂ©rique faible Ă  ceux n'ayant pas de diffĂ©rence d'expression entre les cellules traitĂ©es et non-traitĂ©es. Une fois les donnĂ©es ainsi triĂ©es, nous avons dĂ©montrĂ© un lien entre la diffĂ©renciation neuronale et certains gĂšnes alors que ce lien Ă©tait jusqu'Ă  maintenant encore inconnu. Leur profil d'expression respectif fut par la suite confirmĂ© par PCR en temps rĂ©el et deux gĂšnes candidats ressortent du lot en tant que gĂšnes spĂ©cifiquement associĂ©s Ă  la diffĂ©renciation neuronale: Tal2 et Tango27. Tal2 est un gĂšne bHLH qui joue un rĂŽle dans le dĂ©veloppement du systĂšme nerveux central tandis que Tango27 correspond Ă  une sĂ©quence non-liĂ©e Ă  un gĂšne connu. Des expĂ©riences de surexpression et d'interfĂ©rence Ă  ARN furent conduites pour Tal2, mais aucun effet significatif ne fut rĂ©pertoriĂ©. Par ailleurs, en faisant l'analyse de sa rĂ©gion promotrice, le gĂšne Tal2 possĂšde en aval de sa sĂ©quence codante, un Ă©lĂ©ment ER10 qui pourrait ĂȘtre le site de fixation potentiel pour un rĂ©cepteur nuclĂ©aire. Une expĂ©rience de retardement sur gel a confirmĂ© le fait qu'une ou des protĂ©ines nuclĂ©aires se lient spĂ©cifiquement Ă  cet Ă©lĂ©ment, mais l'identitĂ© de ce qui s'y lie reste encore Ă  ĂȘtre dĂ©terminĂ©. Les travaux prĂ©sentĂ©s dans ce mĂ©moire Ă©tablissent une base de travail permettant l'analyse des gĂšnes potentiellement impliquĂ©s dans la diffĂ©renciation neuronale. En utilisant cette base, deux gĂšnes furent identifiĂ©s et une Ă©tude approfondie quant Ă  leur rĂŽle dans la diffĂ©renciation a Ă©tĂ© entamĂ©e. Nous croyons que ces gĂšnes, tout comme ceux qui pourraient ĂȘtre identifiĂ©s au travers de la mĂ©thode proposĂ©e permettront d'ajouter des connaissances au casse-tĂȘte qu'est la rĂ©gulation des gĂšnes dans la diffĂ©renciation neuronale

    Méthodes d'ordre élevé pour des maillages non structurés et glissants

    No full text
    Les mĂ©thodes numĂ©riques d’ordre Ă©levĂ© se sont avĂ©rĂ©es ĂȘtre un outil essentiel pour amĂ©liorer la prĂ©cision des simulations concernant des Ă©coulements turbulents par la rĂ©solution des lois de conservation. Ces Ă©coulements se trouvent dans une grande variĂ©tĂ© d’applications industrielles et leur prĂ©diction et modĂ©lisation est cruciale pour amĂ©liorer l’efficacitĂ© des procĂšs. Cette thĂšse met en oeuvre et analyse diffĂ©rents types de schĂ©mas de discrĂ©tisation spatiale d’ordre Ă©levĂ© pour des maillages non structurĂ©s afin d’évaluer et de quantifier leur prĂ©cision dans les simulations d’écoulements turbulents. En particulier, les mĂ©thodes de volumes finis (FVM) d’ordre Ă©levĂ© basĂ©es sur les opĂ©rateurs de dĂ©convolution des moindres carrĂ©s et entiĂšrement contraints sont considĂ©rĂ©es. De plus, leur prĂ©cision est Ă©valuĂ©e par une analyse analytique et pour des cas linĂ©aires et non linĂ©aires. Une attention spĂ©ciale est portĂ©e Ă  la comparaison des FVM de second ordre et d’ordre Ă©levĂ©, montrant que la premiĂšre peut surpasser la seconde en termes de prĂ©cision et de performance de calcul dans des configurations sous-rĂ©solues. Les mĂ©thodes d’élĂ©ments spectraux (SEM) d’ordre Ă©levĂ©, y compris Spectral Difference (SD) et Flux Reconstruction (FR), sont comparĂ©es dans diffĂ©rentes configurations linĂ©aires et non linĂ©aires. De plus, un solveur SD basĂ© sur GPU est dĂ©veloppĂ© et ses performances par rapport `a d’autres solveurs basĂ©s sur CPU seront discutĂ©es, montrant ainsi que le solveur dĂ©veloppĂ© basĂ© sur GPU surpasse d’autres solveurs basĂ©s sur CPU en termes de performance Ă©conomique et Ă©nergĂ©tique. La prĂ©cision et le comportement des SEM avec de l’aliasing sont Ă©valuĂ©s dans des cas de test linĂ©aires Ă  l’aide d’outils analytiques. L’utilisation de grilles avec des cellules d’ordre Ă©levĂ©, qui permettent de mieux d’écrire les surfaces d’intĂ©rĂȘt des simulations, en combinaison avec le SEM est Ă©galement analysĂ©e. Cette derniĂšre analyse dĂ©montre qu’un traitement particulier doit ĂȘtre implĂ©mentĂ© pour assurer une prĂ©cision numĂ©rique appropriĂ©e lors de l’utilisation de mailles avec ces Ă©lĂ©ments. Ce document prĂ©sente Ă©galement le dĂ©veloppement et l’analyse de la mĂ©thode Spectral Difference Raviart-Thomas (SDRT) pour les Ă©lĂ©ments bidimensionnels et tridimensionnels de type produit tensoriel et simplex. Cette mĂ©thode est Ă©quivalente Ă  la formulation SD pour les Ă©lĂ©ments de produit tensoriel et peut ĂȘtre considĂ©rĂ©e comme une extension naturelle de la formulation SD pour les Ă©lĂ©ments de type simplex. En outre, une nouvelle famille de mĂ©thodes FR, Ă©quivalente Ă  la mĂ©thode SDRT dans certaines circonstances, est dĂ©crite. Tous ces dĂ©veloppements ont Ă©tĂ© implĂ©mentĂ©s dans le solveur open-source PyFR et sont compatibles avec les architectures CPU et GPU. Dans le contexte des simulations d’ordre Ă©levĂ© d’écoulements turbulents trouvĂ©s dans les cas d’interaction rotor-stator, une mĂ©thode de maillage glissant (qu’implique des grilles non-conformes et le mouvement des maillages) spĂ©cifiquement adaptĂ©e aux simulations massivement parallĂšles est implĂ©mentĂ© dans un solveur basĂ© sur CPU. La mĂ©thode dĂ©veloppĂ©e est compatible avec FVM et SEM de second ordre et d’ordre Ă©levĂ©. D’autre part, le mouvement de la grille, nĂ©cessaire pour simuler les cas d’essai rotor-stator `a cause du mouvement relatif de chaque zone du domaine, est traitĂ© Ă  l’aide de la formulation Arbitrary-Lagrangian-Eulerian (ALE). L’analyse de cette formulation montre son influence importante sur la prĂ©cision numĂ©rique et la stabilitĂ© des simulations numĂ©riques avec du mouvement de maillage.High-order numerical methods have proven to be an essential tool to improve the accuracy of simulations involving turbulent flows through the solution of conservation laws. Such flows appear in a wide variety of industrial applications and its correct prediction is crucial to reduce the power consumption and improve the efficiency of these processes. The present study implements and analyzes different types of high-order spatial discretization schemes for unstructured grids to assess and quantify their accuracy in simulations of turbulent flows. In particular, high-order Finite Volume methods (FVM) based on least squares and fully constrained deconvolution operators are considered and their accuracy is evaluated in a variety of linear and non-linear test cases and throughanalytical analysis. Special emphasis is placed on the comparison of formally second-order and high-order FVM, showing that the former can over-perform the latter in terms of accuracy and computational performance in under-resolved configurations. High-order Spectral Element methods (SEM), including Spectral Difference (SD) and Flux Reconstruction (FR), are compared in different linear and non-linear configurations. Furthermore, a SD GPU-based solver (based on the open-source PyFR solver) is developed and its performance with respect to other state of the art CPU-based solvers will be discussed, showing that the developed GPU-based solver outperforms other state of the art CPU-based solvers in terms of performance-per-euro and performance-per-watt. The accuracy and behavior of SEM under aliasing are assessed in linear test cases using analytical tools. The use of grids with high-order cells, which allow to better describe the surfaces of interests of a given simulation, in combination with SEM is also analyzed. The latter analysis demonstrates that special care must be taken to ensure appropriate numerical accuracy when utilizing meshes with such elements. This document also presents the development and the analysis of the Spectral Difference Raviart-Thomas (SDRT) method for two and three-dimensional tensor product and simplex elements. This method is equivalent to the SD formulation for tensor product elements and it can be considered as a natural extension of the SD formulation for simplex elements. Additionally, a new family of FR methods, which is equivalent to the SDRT method under certain circumstances, is described. All these developments were implemented in the open-source PyFR solver and are compatible with CPU and GPU architectures. In the context of high-order simulations of turbulent flows found in rotor-stator interaction test cases, a sliding mesh method (which involves non-conformal grids and mesh motion) specifically tailored for massivelyparallel simulations is implemented within a CPU-based solver. The developed method is compatible with second-order and high-order FVM and SEM. Grid movement, needed to simulate rotor-stator test cases due to the relative movement of each domain zone, is treated using the Arbitrary-Lagrangian-Eulerian (ALE) formulation. The analysis of such formulation depicts its important influence on the numerical accuracy and stability of numerical simulations with mesh motion. Moreover, specific non-conformal discretization methodscompatible with second-order and high-order FVM and SEM are developed and their accuracy is assessed on different non-linear test cases. The parallel scalability of the method is assessed with up to 11000 cores, proving appropriate computational efficiency. The accuracy of the implementation is assessed through a set of linear and non-linear test cases. Preliminary results of the turbulent flow around a DGEN 380 fan stage in an under-resolved configuration are shown and compared to available experimental data

    Melting dynamics of a phase change material (PCM) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models

    Full text link
    We study the melting process of n-octadecane with dispersed Al2O3 nanoparticles in a semicircle. The effective transport coefficients of the resulting nanofluid are modeled with (i) mean field models due to Maxwell-Garnett for the conductivity and Brinkmann for viscosity, and (ii) an empirical model based on a least square fit to experimental data due to Corcione (2011). In both cases, we consider a uniform nanoparticle distribution in the liquid and solid phases and incorporate as well the change of conductivity in the latter phase. We carry out simulations with the transport coefficients predicted by both models and find that Maxwell & Brinkmann overestimates heat transfer rates compared to the empirical fit for most of the ranges of nanoparticle concentration, size, and temperature. However, the proper selection of nanoparticles attending to their size and temperature can lead to enhanced heat transfer, even beyond of mean field model predictions. We show how the effective Prandtl number is the single most important parameter that determines the dynamics and duration of the melting process, and how predictions of our simulations agree with recent experiments (Ho and Gao, 2009)
    corecore