98 research outputs found

    A Survey of Weak MgII Absorbers at 0.4 < z < 2.4

    Get PDF
    We present results from a survey of weak MgII absorbers in the VLT/UVES spectra of 81 QSOs obtained from the ESO archive. In this survey, we identified 112 weak MgII systems within the redshift interval 0.4 < z < 2.4 with 86% completeness down to a rest-frame equivalent width of W_r(2796) = 0.02A, covering a cumulative redshift path length of deltaZ=77.3. From this sample, we estimate that the number of weak absorbers per unit redshift dN/dz increases from 1.06 +/- 0.04 at =1.9 to 1.76 +/- 0.08 at =1.2 and thereafter decreases to 1.51 +/- 0.09 at =0.9 and 1.06 +/- 0.10 at =0.6. Thus we find evidence for an evolution in the population of weak MgII absorbers, with their number density peaking at z=1.2. We also determine the equivalent width distribution of weak systems at =0.9 and =1.9. At 0.4 < z < 1.4, there is evidence for a turnover from a powerlaw of the form n(W_r) \propto W_r^{-1.04} at W_r(2796) < 0.1A. This turnover is more extreme at 1.4 < z < 2.4, where the equivalent width distribution is close to an extrapolation of the exponential distribution function found for strong MgII absorbers. Based on these results, we discuss the possibility that some fraction of weak MgII absorbers, particularly single cloud systems, are related to satellite clouds surrounding strong MgII systems. These structures could also be analogs to Milky Way high velocity clouds. In this context, the paucity of high redshift weak MgII absorbers is caused by a lack of isolated accreting clouds on to galaxies during that epoch.Comment: 14 pages, 11 figures, ApJ accepte

    Modeling line-driven disk wind for broad absorption lines of quasars

    Full text link
    The disk wind, which is powered by the radiation force due to spectral lines (line force), is studied for broad absorption line (BAL) quasars. We investigate the structure of the disk wind based on the non-hydrodynamic method and compare with wind properties inferred from X-ray observations of BAL quasars. In this paper, we apply the stellar wind theory to the initial condition (the mass outflow rate at the base of the wind). We found the funnel-shaped winds with a half opening angle of 50^{circ} for the case of epsilon=0.3-0.9 and M_{BH}=10^{7-8.5}M_odot, where epsilon is the Eddington ratio and M_{BH} is the black hole mass. Thus, the absorption features are observed for an observer of which a viewing angle is around 50^{circ}. A probability of BAL quasars is 7-11%, which is roughly consistent the abundance ratio of BAL quasars, 10-15%. Here, the probability is estimated by the solid angle, that the absorbing features would be detected, divided by 4pi. In contrast, if the Eddington ratio is smaller than 0.01 or if the black hole is very massive, M_{BH} < 10^9M_{odot}, the disk wind is not launched due to the less effective line force. Then, the quasars are identified as non-BAL quasars independently of the observer's viewing angle.Comment: 10 pages, 6 figures. Accepted for publication in PAS

    Spectroscopy along Multiple, Lensed Sightlines through Outflowing Winds in the Quasar SDSS J1029+2623

    Get PDF
    We study the origin of absorption features on the blue side of the C IV broad emission line of the large-separation lensed quasar SDSS J1029+2623 at z_em ~ 2.197. The quasar images, produced by a foreground cluster of galaxies, have a maximum separation angle of ~ 22".5. The large angular separation suggests that the sight-lines to the quasar central source can go through different regions of outflowing winds from the accretion disk of the quasar, providing a unique opportunity to study the structure of outflows from the accretion disk, a key ingredient for the evolution of quasars as well as for galaxy formation and evolution. Based on medium- and high-resolution spectroscopy of the two brightest images conducted at the Subaru telescope, we find that each image has different intrinsic levels of absorptions, which can be attributed either to variability of absorption features over the time delay between the lensed images, ~ 774 days, or to the fine structure of quasar outflows probed by the multiple sight-lines toward the quasar. While both these scenarios are consistent with the current data, we argue that they can be distinguished with additional spectroscopic monitoring observations.Comment: 17 pages, including 7 figures; accepted for publication in the Astronomical Journa

    MONITORING THE VARIABILITY OF INTRINSIC ABSORPTION LINES IN QUASAR SPECTRA

    Get PDF
    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm–3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.ArticleASTROPHYSICAL JOURNAL. 792(1):77 (2014)journal articl

    Spectroscopic Observations of the Outflowing Wind in the Lensed Quasar SDSS J1001+5027

    Get PDF
    We performed spectroscopic observations of the small-separation lensed quasar SDSS J1001+5027, whose images have an angular separation θ2. ⁣ ⁣86\theta \sim 2.^{\!\!\prime\prime}86, and placed constraints on the physical properties of gas clouds in the vicinity of the quasar (i.e., in the outflowing wind launched from the accretion disk). The two cylinders of sight to the two lensed images go through the same region of the outflowing wind and they become fully separated with no overlap at a very large distance from the source (330\sim 330 pc). We discovered a clear difference in the profile of the CIV broad absorption line (BAL) detected in the two lensed images in two observing epochs. Because the kinematic components in the BAL profile do not vary in concert, the observed variations cannot be reproduced by a simple change of ionization state. If the variability is due to gas motion around the background source (i.e., the continuum source), the corresponding rotational velocity is vrot18,000v_{rot}\geq 18,000 km/s, and their distance from the source is r0.06r\leq 0.06 pc assuming Keplerian motion. Among three MgII and three CIV NAL systems that we detected in the spectra, only the MgII system at zabs=0.8716z_{abs} = 0.8716 shows a hint of variability in its MgI profile on a rest-frame time scale of Δtrest\Delta t_{rest} 191\leq 191 days and an obvious velocity shear between the sightlines whose physical separation is 7\sim 7 kpc. We interpret this as the result of motion of a cosmologically intervening absorber, perhaps located in a foreground galaxy.Comment: 15 pages, including 7 figures; accepted for publication in the Astrophysical Journa

    A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS1603+3820

    Get PDF
    We report the results of a spectropolarimetric observation of the C IV mini-BAL in the quasar HS1603+3820. The observations were carried out with the FOCAS instrument on the Subaru telescope and yielded an extremely high polarization sensitivity of 0.1%, at a resolving power of 1500. HS1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C IV mini-BAL profile. Using the monitoring observations, in an earlier paper we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber, and (2) a variable, highly-ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (a) the polarization level is very small (p~0.6%) throughout the spectrum, and (b) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C IV mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.Comment: To appear in the Astrophysical Journal, vol. 719, August 201
    corecore