208 research outputs found

    Spontaneous dural tear leading to intracranial hypotension and tonsillar herniation in Marfan syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We describe the case of a 38 year old male with Marfan syndrome who presented with orthostatic headaches and seizures.</p> <p>Case Presentation</p> <p>The patient was diagnosed with Spontaneous Intracranial Hypotension secondary to CSF leaks, objectively demonstrated by MR Myelogram with intrathecal contrast. Epidural autologus blood patch was administered at the leakage site leading to significant improvement.</p> <p>Conclusion</p> <p>Our literature search shows that this is the second reported case of a Marfan patient presenting with symptomatic spontaneous CSF leaks along with tonsillar herniation.</p

    Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG.

    Get PDF
    Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H(+) Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression

    Get PDF
    Loss of the coxsackie and adenovirus receptor (CAR) has previously been observed in gastric cancer. The role of CAR in gastric cancer pathobiology, however, is unclear. We therefore analysed CAR in 196 R0-resected gastric adenocarcinomas and non-cancerous gastric mucosa samples using immunohistochemistry and immunofluorescence. Coxsackie and adenovirus receptor was found at the surface and foveolar epithelium of all non-neoplastic gastric mucosa samples (n=175), whereas only 56% of gastric cancer specimens showed CAR positivity (P<0.0001). Loss of CAR correlated significantly with decreased differentiation, increased infiltrative depths, presence of distant metastases, and was also associated with reduced carcinoma-specific survival. To clarify whether CAR impacts the tumorbiologic properties of gastric cancer, we subsequently determined the role of CAR in proliferation, migration, and invasion of gastric cancer cell lines by application of specific CAR siRNA or ectopic expression of a human full-length CAR cDNA. These experiments showed that RNAi-mediated CAR knock down resulted in increased proliferation, migration, and invasion of gastric cancer cell lines, whereas enforced ectopic CAR expression led to opposite effects. We conclude that the association of reduced presence of CAR in more severe disease states, together with our findings in gastric cancer cell lines, suggests that CAR functionally contributes to gastric cancer pathogenesis, showing features of a tumour suppressor

    Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.

    Get PDF
    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis

    Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation

    Get PDF
    BACKGROUND: Independent of efficacy, information on safety of surgical procedures is essential for informed choices. We seek to develop standardized methodology for describing the safety of spinal operations and apply these methods to study lumbar surgery. We present a conceptual model for evaluating the safety of spine surgery and describe development of tools to measure principal components of this model: (1) specifying outcome by explicit criteria for adverse event definition, mode of ascertainment, cause, severity, or preventability, and (2) quantitatively measuring predictors such as patient factors, comorbidity, severity of degenerative spine disease, and invasiveness of spine surgery. METHODS: We created operational definitions for 176 adverse occurrences and established multiple mechanisms for reporting them. We developed new methods to quantify the severity of adverse occurrences, degeneration of lumbar spine, and invasiveness of spinal procedures. Using kappa statistics and intra-class correlation coefficients, we assessed agreement for the following: four reviewers independently coding etiology, preventability, and severity for 141 adverse occurrences, two observers coding lumbar spine degenerative changes in 10 selected cases, and two researchers coding invasiveness of surgery for 50 initial cases. RESULTS: During the first six months of prospective surveillance, rigorous daily medical record reviews identified 92.6% of the adverse occurrences we recorded, and voluntary reports by providers identified 38.5% (surgeons reported 18.3%, inpatient rounding team reported 23.1%, and conferences discussed 6.1%). Trained observers had fair agreement in classifying etiology of 141 adverse occurrences into 18 categories (kappa = 0.35), but agreement was substantial (kappa ≥ 0.61) for 4 specific categories: technical error, failure in communication, systems failure, and no error. Preventability assessment had moderate agreement (mean weighted kappa = 0.44). Adverse occurrence severity rating had fair agreement (mean weighted kappa = 0.33) when using a scale based on the JCAHO Sentinel Event Policy, but agreement was substantial for severity ratings on a new 11-point numerical severity scale (ICC = 0.74). There was excellent inter-rater agreement for a lumbar degenerative disease severity score (ICC = 0.98) and an index of surgery invasiveness (ICC = 0.99). CONCLUSION: Composite measures of disease severity and surgery invasiveness may allow development of risk-adjusted predictive models for adverse events in spine surgery. Standard measures of adverse events and risk adjustment may also facilitate post-marketing surveillance of spinal devices, effectiveness research, and quality improvement

    Alternative splicing and the progesterone receptor in breast cancer

    Get PDF
    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions
    corecore