32 research outputs found

    Airport airside balanced capacity usage and planning

    Get PDF
    U doktorskoj disertaciji je predložen postupak za analizu kapaciteta vazdušne strane aerodroma, za zadata fizička i operativna ograničenja, i zadate karakteristike potražnje. Ovaj postupak podrazumeva povezivanje (postojećeg) modela za procenu kapaciteta sistema poletno-sletnih staza sa (proširenim) modelom za procenu kapaciteta pristanišne platforme, kroz njihovu funkcionalnu vezu. Cilj ove doktorske disertacije je bio vrednovanje i, po potrebi, modifikovanje i proširenje postojećih modela za procenu kapaciteta platforme, kao i definisanje funkcionalne veze između poletno-sletne staze i platforme za različite tipove saobraćaja. Postojeći modeli su prošireni tako da uzimaju u obzir ograničenja po tipu aviona i korisnicima (npr. aviokompanije), kao i po vrsti saobraćaja. U cilju analize osetljivosti, predlažene su obvojnice za prikazivanje kapaciteta platforme određene konfiguracije, u zavisnosti od strukture potražnje u odnosu na glavne uticajne faktore. Analiza je obuhvatila dva osnovna tipa aerodroma sa aspekta njihove uloge u mrežama vazdušnog saobraćaja, a to su: izvorno-ciljni aerodromi, sa dominantnim saobraćajem od-tačke-do-tačke, i hub aerodromi, sa dominantnim transfernim saobraćajem za koji je karakteristično da se koncentriše u talase. Dodatno su analizirani i aerodromi na kojima postoje oba tipa saobraćaja. Rezultati disertacije pokazuju da se za izvorno-ciljne aerodrome može koristiti standardni pristup prilikom analize ukupnog kapaciteta vazdušne strane aerodroma, u kome se poletno-sletna staza i pristanišna platforma posmatraju odvojeno, pri čemu manji kapacitet nameće ograničenje ukupnog kapaciteta. Sa druge strane, u slučaju hub aerodroma kapacitet platforme i kapacitet poletno-sletne staze se ne mogu posmatrati nezavisno jedan od drugog. S tim u skladu, u ovoj doktorskoj disertaciji predložen je model za procenu kapaciteta platforme na hub aerodromima, koji pored konfiguracije platforme i strukture potražnje uzima u obzir i kapacitet poletno-sletne staze, kao i parametre koji opisuju talasnu strukturu saobraćaja...The thesis proposes an approach to analyzing the capacity of the existing (built) system under given physical and operational constraints and for given demand characteristics. The approach considers the linking of the (existing) runway capacity model with the (extended) apron capacity model, through the runway-apron functional relationship. The objective of the thesis was to evaluate and, if necessary, to modify/expand the existing apron capacity estimation models, as well as to define functional relationship between the runway system and apron(s). Existing apron capacity models are modified to include constraints on both aircraft classes and users (e.g. airlines), considering also different traffic types. The thesis also suggests apron capacity envelopes to illustrate sensitivity of apron capacity to changes in the demand structure with respect to dominant users, provided for a given apron configuration. Two general airport categories with respect to the role of the airport in the air transport network are analyzed: origin-destination airports (serving primarily point-to-point flights) and hub airports (serving primarily airline/alliance coordinated flights). Furthermore, the thesis also considers the co-existence of point-to-point and coordinated flights at a single airport. The results of the thesis show that the common approach in the overall airside capacity analysis can be applied at origin-destination airports: the runway system and apron(s) can be observed independently of each other, deriving the conclusion on the overall airside capacity by comparing the two. On the other hand, the finding of the thesis is that capacities of the runway system and apron(s) at the hub airports have to be observed linked to each other. Consequently, a model to estimate apron capacity at hub airport is offered in the thesis. In addition to apron configuration and demand structure it also takes into consideration: hubbing parameters and the runway system performance..

    Prosthetic hand sensor placement: Analysis of touch perception during the grasp

    Get PDF
    Humans rely on their hands to perform everyday tasks. The hand is used as a tool, but also as the interface to “sense” the world. Current prosthetic hands are based on sophisticated multi-fingered structures, and include many sensors which counterpart natural proprioceptors and exteroceptors. The sensory information is used for control, but not sent to the user of the hand (amputee). Grasping without sensing is not good enough. This research is part of the development of the sensing interface for amputees, specifically addressing the analysis of human perception while grasping. The goal is to determine the small number of preferred positions of sensors on the prosthetic hand. This task has previously been approached by trying to replicate a natural sensory system characteristic for healthy humans, resulting in a multitude of redundant sensors and basic inability to make the patient aware of the sensor readings on the subconscious level. We based our artificial perception system on the reported sensations of humans when grasping various objects without seeing the objects (obstructed visual feedback). Subjects, with no known sensory deficits, were asked to report on the touch sensation while grasping. The analysis included objects of various sizes, weights, textures and temperatures. Based on this data we formed a map of the preferred positions for the sensors that is appropriate for five finger human-like robotic hand. The final map was intentionally minimized in size (number of sensors)

    Impact of Aircraft Noise on Communities Near Belgrade Airport

    Get PDF
    The aim of this research was to examine the impact of aircraft noise on communities near the Belgrade Airport by conducting short-term noise measurements. Apart from the noise abatement procedure published in the Aeronautical Information Publication for Belgrade Airport, there are still neither publicly available reports of the actual efforts made towards the aircraft noise reduction nor the description of the current noise situation. In order to estimate the current noise situation, eighteen aircraft overflight noise measurements were taken in two settlements in specific sound-sensitive community areas around the Belgrade Airport. The results showed that level differences between background noise and aircraft overflights were higher than 10 dB for each measurement and could be considered significant. Furthermore, preliminary compatibility analysis with acoustic zoning was performed. Average daily noise levels were estimated from these short-term measurements and were compared to legal noise limits for different acoustic zones. The results indicate that in some cases noise levels exceed the legal threshold, which should encourage land use planners to include the issue of Belgrade acoustic zoning on the agenda, but also prompt Belgrade Airport to implement continuous noise and flight tracks monitoring

    Redox-Based Inactivation of Cysteine Cathepsins by Compounds Containing the 4-Aminophenol Moiety

    Get PDF
    BACKGROUND: Redox cycling compounds have been reported to cause false positive inhibition of proteases in drug discovery studies. This kind of false positives can lead to unusually high hit rates in high-throughput screening campaigns and require further analysis to distinguish true from false positive hits. Such follow-up studies are both time and resource consuming. METHODS AND FINDINGS: In this study we show that 5-aminoquinoline-8-ol is a time-dependent inactivator of cathepsin B with a k(inact)/K(I) of 36.7 ± 13.6 M(-1) s(-1) using enzyme kinetics. 5-Aminoquinoline-8-ol inhibited cathepsins H, L and B in the same concentration range, implying a non-specific mechanism of inhibition. Further analogues, 4-aminonaphthalene-1-ol and 4-aminophenol, also displayed time-dependent inhibition of cathepsin B with k(inact)/K(I) values of 406.4 ± 10.8 and 36.5 ± 1.3 M(-1) s(-1). No inactivation occurred in the absence of either the amino or the hydroxyl group, suggesting that the 4-aminophenol moiety is a prerequisite for enzyme inactivation. Induction of redox oxygen species (ROS) by 4-aminophenols in various redox environments was determined by the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate. Addition of catalase to the assay buffer significantly abrogated the ROS signal, indicating that H(2)O(2) is a component of the ROS induced by 4-aminophenols. Furthermore, using mass spectrometry, active site probe DCG-04 and isoelectric focusing we show that redox inactivation of cysteine cathepsins by 5-aminoquinoline-8-ol is active site directed and leads to the formation of sulfinic acid. CONCLUSIONS: In this study we report that compounds containing the 4-aminophenol moiety inactivate cysteine cathepsins through a redox-based mechanism and are thus likely to cause false positive hits in the screening assays for cysteine proteases

    Estimation of temperature transfer function in facade wall heat transport

    Get PDF
    This paper is presenting a method for temperature transfer function (TTF) estimation by filtering an experimentally collected data. The experimental data were obtained in simultaneous measurements of inside and outside temperatures variations during the period of 3 months of a building located in Belgrade, Serbia. The TTF estimation is based on Wiener filtering technique for the dynamic systems with finite impulse response (FIR). TTF is derivate in time and complex domain and the correctness of the acquired transfer function is tested on the new input data set. The estimated TTF in complex domain is used to get decrement factor (DF) and time lag (TL) between the temperatures

    Spregnuti elementi u uslovima požara i mere zaštite

    Get PDF
    In this paper, the results of numerical simulation of 2D non-stationary temperature fields in commonly used composite structural members made of steel and concrete in fire conditions were presented. Simulation is based on the model which includes temperature dependence of physical parameters of materials, specific heat and thermal conductivity. Analysis of composite structural members comprises determination of a heat flux field which additionally facilitates understanding of region and geometry ofheat flow, thus enhancing fire protection design. Initial temperature distribution is adopted as uniform, according to Eurocode. Fire conditions were according to ISO 834.The FEM computations for different protection scenario and protective materials for partially encased I section - are conducted in ABAQUS. Obtained results can be used in cost optimization of fire protection measures.Zbornik radova Građevinskog fakultet

    The Role of Rural Tourism in Strengthening the Sustainability of Rural Areas: The Case of Zlakusa Village

    Get PDF
    The strategic planning of rural development is focused on both economic growth and sustainable development. Sustainable rural development is essential for conserving and improving resources, while economic growth contributes to a better standard of living. The aim of the research is to determine, using the participatory rural appraisal (PRA) methodology on the example of the village of Zlakusa, the economic activities developed in the village, the importance of rural tourism, and the scope of sustainable development taken into account in rural development. The results of the research show that the success of the rural community depends on: diversification of economic activities, which is accompanied by cohesion of the population through association and organization; organized activities aimed at local or republican authorities; activation of human and social capital; and initiating activities involving marginalized groups. Educating the population outside formal education improves the sustainable and economic development of the village and enables rural tourism to become an important part of economic activities and a channel for the commercialization of natural and cultural contents

    The basophil surface marker CD203c identifies Aspergillus species sensitization in patients with cystic fibrosis.

    Get PDF
    BACKGROUND: Colonization by Aspergillus fumigatus in patients with cystic fibrosis (CF) can cause A fumigatus sensitization and/or allergic bronchopulmonary aspergillosis (ABPA), which affects pulmonary function and clinical outcomes. Recent studies show that specific allergens upregulate the surface-expressed basophil marker CD203c in sensitized subjects, a response that can be readily measured by using flow cytometry. OBJECTIVE: We sought to identify A fumigatus sensitization in patients with CF by using the basophil activation test (BAT). METHODS: Patients with CF attending Beaumont Hospital were screened for study inclusion. BAT was used to identify A fumigatus sensitization. Serologic (total and A fumigatus-specific IgE), pulmonary function, and body mass index measurements were performed. RESULTS: The BAT discriminates A fumigatus-sensitized from nonsensitized patients with CF. Persistent isolation of A fumigatus in sputum is a significant risk factor for A fumigatus sensitization. Levels of the A fumigatus-stimulated basophil activation marker CD203c inversely correlated with pulmonary function and body mass index in A fumigatus-sensitized but not nonsensitized patients with CF. Total and A fumigatus-specific IgE, but not IgG, levels are increased in A fumigatus-sensitized patients with CF and ABPA when compared with those in A fumigatus-sensitized and nonsensitized patients with CF without ABPA. Itraconazole treatment did not affect A fumigatus sensitization. CONCLUSION: Combining the BAT with routine serologic testing allows classification of patients with CF into 3 groups: nonsensitized, A fumigatus-sensitized, and ABPA. Accurate and prompt identification of A fumigatus-associated clinical status might allow early and targeted therapeutic intervention, potentially improving clinical outcomes

    Airport airside balanced capacity usage and planning

    No full text
    U doktorskoj disertaciji je predložen postupak za analizu kapaciteta vazdušne strane aerodroma, za zadata fizička i operativna ograničenja, i zadate karakteristike potražnje. Ovaj postupak podrazumeva povezivanje (postojećeg) modela za procenu kapaciteta sistema poletno-sletnih staza sa (proširenim) modelom za procenu kapaciteta pristanišne platforme, kroz njihovu funkcionalnu vezu. Cilj ove doktorske disertacije je bio vrednovanje i, po potrebi, modifikovanje i proširenje postojećih modela za procenu kapaciteta platforme, kao i definisanje funkcionalne veze između poletno-sletne staze i platforme za različite tipove saobraćaja. Postojeći modeli su prošireni tako da uzimaju u obzir ograničenja po tipu aviona i korisnicima (npr. aviokompanije), kao i po vrsti saobraćaja. U cilju analize osetljivosti, predlažene su obvojnice za prikazivanje kapaciteta platforme određene konfiguracije, u zavisnosti od strukture potražnje u odnosu na glavne uticajne faktore. Analiza je obuhvatila dva osnovna tipa aerodroma sa aspekta njihove uloge u mrežama vazdušnog saobraćaja, a to su: izvorno-ciljni aerodromi, sa dominantnim saobraćajem od-tačke-do-tačke, i hub aerodromi, sa dominantnim transfernim saobraćajem za koji je karakteristično da se koncentriše u talase. Dodatno su analizirani i aerodromi na kojima postoje oba tipa saobraćaja. Rezultati disertacije pokazuju da se za izvorno-ciljne aerodrome može koristiti standardni pristup prilikom analize ukupnog kapaciteta vazdušne strane aerodroma, u kome se poletno-sletna staza i pristanišna platforma posmatraju odvojeno, pri čemu manji kapacitet nameće ograničenje ukupnog kapaciteta. Sa druge strane, u slučaju hub aerodroma kapacitet platforme i kapacitet poletno-sletne staze se ne mogu posmatrati nezavisno jedan od drugog. S tim u skladu, u ovoj doktorskoj disertaciji predložen je model za procenu kapaciteta platforme na hub aerodromima, koji pored konfiguracije platforme i strukture potražnje uzima u obzir i kapacitet poletno-sletne staze, kao i parametre koji opisuju talasnu strukturu saobraćaja...The thesis proposes an approach to analyzing the capacity of the existing (built) system under given physical and operational constraints and for given demand characteristics. The approach considers the linking of the (existing) runway capacity model with the (extended) apron capacity model, through the runway-apron functional relationship. The objective of the thesis was to evaluate and, if necessary, to modify/expand the existing apron capacity estimation models, as well as to define functional relationship between the runway system and apron(s). Existing apron capacity models are modified to include constraints on both aircraft classes and users (e.g. airlines), considering also different traffic types. The thesis also suggests apron capacity envelopes to illustrate sensitivity of apron capacity to changes in the demand structure with respect to dominant users, provided for a given apron configuration. Two general airport categories with respect to the role of the airport in the air transport network are analyzed: origin-destination airports (serving primarily point-to-point flights) and hub airports (serving primarily airline/alliance coordinated flights). Furthermore, the thesis also considers the co-existence of point-to-point and coordinated flights at a single airport. The results of the thesis show that the common approach in the overall airside capacity analysis can be applied at origin-destination airports: the runway system and apron(s) can be observed independently of each other, deriving the conclusion on the overall airside capacity by comparing the two. On the other hand, the finding of the thesis is that capacities of the runway system and apron(s) at the hub airports have to be observed linked to each other. Consequently, a model to estimate apron capacity at hub airport is offered in the thesis. In addition to apron configuration and demand structure it also takes into consideration: hubbing parameters and the runway system performance..
    corecore