3 research outputs found

    Impact crater degradation, Oxia Planum, Mars

    Get PDF
    The main goal of the European Space Agency (ESA) and Roscosmos ExoMars rover mission is to collect samples from the near-subsurface of Mars. The rover will look for any physical or chemical evidence of ancient life in the near subsurface. This map shows the distribution of impact craters at this proposed landing site in Oxia Planum on Mars. The map records 1199 impact craters > 500 m in diameter in a 5.0° × 2.5° region around Oxia Planum. The impact craters are symbolised based on the way different aspects of their morphology have degraded since their formation. The distribution of degradation and burial morphologies of impact craters can be used to determine where burial and erosion processes have occurred. Because the formation of impact craters is well constrained, occurs instantly and with a predictable flux, future studies could use this knowledge and our dataset to constrain when these events occurred

    The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin

    Get PDF
    Herein we present the geology of the Nawish quadrangle, located in the equatorial region of dwarf planet Ceres, named after one of the most prominent craters of the area. Geologic mapping was based on the image mosaics and digital terrain models derived from Dawn Framing Camera data. Interpretation of geologic units was supported by supplemental data, such as the multi spectral color images from the Framing Camera, and the spectral parameters derived from the Visible and Infrared Spectrometer (VIR) data, as well as Dawn gravity data. There is not a primary feature that dominates the geology of Nawish quadrangle, but rather several terrains overlap, and their relations explain the geology of the area. Crater size frequency distributions show that Nawish quadrangle is dominated by two distinct time domains. The central and eastern part of the quadrangle is topographically elevated, which we define as cratered highlands, and contains the older domain. The western lowlands show two younger domains related to impact craters Kerwan and Dantu, including the Kerwan smooth material and Dantu ejecta. This variation of elevation within the Nawish quadrangle is more than the half of the global topographic altitude variation on Ceres. Analysis and comparison of the topography of the Nawish quadrangle with surrounding ones shows that this quadrangle is dominated by the topography of the rim sector of a large, >800 km ancient impact basin, most likely the putative Vendimia Planitia. The Nawish quadrangle thus represents a sector of Ceres which has not undergone large-scale, post-Kerwan, intermediate age-events, but rather represents a place on Ceres where a well-preserved relict of old cerean crust can be studied, together with ejecta from more recent impact events
    corecore