18 research outputs found

    ΠΠ°Ρ˜Ρ‡Π΅ΡΡ‚ΠΈ бактСриски ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ ΠΎΠ΄ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ ΠΎΠ΄ Ρ€Π°Π½ΠΈ – Ρ‚Ρ€ΠΈΠ³ΠΎΠ΄ΠΈΡˆΠ½Π° ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π°

    Get PDF
    Aim: The aim of our study was to determine the most common bacteria isolated from wound samples and tΠΎ compare the frequency of the resistant bacteria isolated over a 3-year period. Material and methods: During a three years period (2017-2019) a total of 11 863 wound samples (wound swabs, punctuates, exudates, tissue, etc.) were obtained from the hospitalized patients in the University Clinics of the ,,Mother Theresa” campus, the City hospital ,,8th September” and the University Clinic for surgical diseases ,,St. Naum Ohridski” in Skopje. All samples were processed at the Institute of Microbiology and Parasitology, Faculty of Medicine, Skopje. They were examined by standard microbiology techniques. Identification and susceptibility of microorganisms were done by both standard methods and automatized Vitek 2 system. Results: Out of a total number of samples, which was 3 463 in 2017, 4 127 in 2018 and 4 273 in 2019, positive were 2 068 (60%), 2 302 (55.8%) and 2 387 (55.9%), respectively. From the total of aerobes/facultative anaerobes (2 758, 2 949 and 3 279 in three consecutive years, 2017, 2018 and 2019, respectively), Staphylococcus aureus was the most predominant isolate (19.5%, 16.6%, 16.9%) followed by Enterococcus spp (16%, 16%, 16.7%), Pseudomonas aeruginosa (12%, 13%, 12.7%) and E. coli (10%, 10.4%, 10.7%). Considering anaerobic bacteria, the percentage of Gram positive anaerobes (Peptostreptococcus) has decreased from 33% to 18% out of a total number of anaerobes, unlike Gram negative anaerobes in which the increasing percentage was mostly observed in bacteria of the genus Bacteroides (from 39% to 45%). The percentage of the resistant strains of MRSA, CNS-MR and VRE was almost the same in that period. In Gram-negatives the percentage of ESBL-positive isolates of E. coli and Enterobacter spp. increased consecutively from 2017 to 2019. The increase in the percentage of resistant strains was more noticeable in ESBL-positive isolates of Klebsiella pneumonia between 2017 and 2018, but in 2019 a percentage decrease can be observed. Considering carbapenem-resistant (CR) Enterobacterales, an increase in the resistance was noticeable in K. pneumonia. The increase in the percentage of resistant strains in Enterobacter spp. between 2017 and 2018, as well as the decrease between 2018 and 2019 was statistically significant. The percentage of CR-isolates of Pseudomonas aeruginosa was from 30% to 38% and for Acinetobacter spp. this percentage was from 81% to 85%. Conclusion: The knowledge of the most commonly isolated bacterial pathogens, especially the presence of resistant bacteria, is crucial and should be continuously monitored in order to understand, construct and update effective treatment algorithms and guidelines.Π¦Π΅Π»: Π¦Π΅Π» Π½Π° ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π°Ρ‚Π° Π΅ Π΄Π° сС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π°Ρ‚ Π½Π°Ρ˜Ρ‡Π΅ΡΡ‚ΠΈΡ‚Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½ΠΈ ΠΎΠ΄ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ ΠΎΠ΄ Ρ€Π°Π½ΠΈ ΠΈ Π΄Π° сС спорСди ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° рСзистСнтни Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Π²ΠΎ Ρ‚Ρ€ΠΈΠ³ΠΎΠ΄ΠΈΡˆΠ½ΠΈΠΎΡ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ: Π’ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΎΠ΄ Ρ‚Ρ€ΠΈ Π³ΠΎΠ΄ΠΈΠ½ΠΈ (2017-2019) Π±Π΅Π° Π·Π΅ΠΌΠ΅Π½ΠΈ Π²ΠΊΡƒΠΏΠ½ΠΎ  11 863 ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ ΠΎΠ΄ Ρ€Π°Π½ΠΈ (брисСви, ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ‚ΠΈ, Сксудати, Ρ‚ΠΊΠΈΠ²ΠΎ ΠΈ Π΄Ρ€.) ΠΎΠ΄ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ хоспитализирани Π²ΠΎ УнивСрзитСтскитС ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ Π²ΠΎ кампусот ,,Мајка ВСрСза”, Градската Π±ΠΎΠ»Π½ΠΈΡ†Π° ,,8. БСптСмври” УнивСрзитСтската ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ° Π·Π° Ρ…ΠΈΡ€ΡƒΡ€ΡˆΠΊΠΈ болСсти ,,Π‘Π². Наум ΠžΡ…Ρ€ΠΈΠ΄ΡΠΊΠΈβ€ Π²ΠΎ БкопјС. Π‘ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ Π±Π΅Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π΅Π½ΠΈ Π½Π° Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ΠΎΡ‚ Π·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°, ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΈ Ρ„Π°ΠΊΡƒΠ»Ρ‚Π΅Ρ‚, БкопјС. Π—Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π±Π΅Π° користСни стандардни ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Π½Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈΡ‚Π΅, ΠΊΠ°ΠΊΠΎ ΠΈ ΠΎΠ΄Ρ€Π΅Π΄ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π½ΠΈΠ²Π½Π°Ρ‚Π° осСтливост ΠΊΠΎΠ½ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΈ срСдства бСшС Π½Π°ΠΏΡ€Π°Π²Π΅Π½Π° со стандардни ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€Π°Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ (Vitek 2- систСм).  Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ: Од Π²ΠΊΡƒΠΏΠ½ΠΈΠΎΡ‚ Π±Ρ€ΠΎΡ˜ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ кој ΠΈΠ·Π½Π΅ΡΡƒΠ²Π°ΡˆΠ΅  3 463 Π²ΠΎ  2017, 4 127 Π²ΠΎ 2018 ΠΈ 4 273 Π²ΠΎ 2019 Π³ΠΎΠ΄., ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈ Π±Π΅Π° 2 068 (60%), 2 302 (55,8%) ΠΈ 2 387 (55,9%), послСдоватСлно. Од Π²ΠΊΡƒΠΏΠ½ΠΈΠΎΡ‚ Π±Ρ€ΠΎΡ˜ Π°Π΅Ρ€ΠΎΠ±ΠΈ/Ρ„Π°ΠΊΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎ Π°Π½Π°Π΅Ρ€ΠΎΠ±ΠΈ (2 758, 2 949 ΠΈ 3 279 Π²ΠΎ Ρ‚Ρ€ΠΈ послСдоватСлни Π³ΠΎΠ΄ΠΈΠ½ΠΈ, 2017, 2018 ΠΈ 2019 Π³ΠΎΠ΄.), Π½Π°Ρ˜Ρ‡Π΅ΡΡ‚ΠΎ ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½Π° бСшС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΡ˜Π°Ρ‚Π° Staphylococcus aureus (19,5%, 16,6% ΠΈ 16,9%), ΠΏΠΎΡ‚ΠΎΠ° Enterococcus spp (16%, 16% ΠΈ 16,7%), Pseudomonas aeruginosa (12%, 13% ΠΈ  12,7%) ΠΈ E. coli (10%, 10,4% ΠΈ 10,7%). Од Π°Π½Π°Π΅Ρ€ΠΎΠ±Π½ΠΈΡ‚Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, бСшС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ΠΎ Π½Π°ΠΌΠ°Π»ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ Π°Π½Π°Π΅Ρ€ΠΎΠ±ΠΈ (Peptostreptococcus) ΠΎΠ΄ 33% Π½Π° 18%, ΠΎΠ΄ Π²ΠΊΡƒΠΏΠΈΠΎΡ‚ Π±Ρ€ΠΎΡ˜ Π½Π° Π°Π½Π°Π΅Ρ€ΠΎΠ±ΠΈ, Π·Π° Ρ€Π°Π·Π»ΠΈΠΊΠ° ΠΎΠ΄ Π“Ρ€Π°ΠΌ-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ Π°Π½Π°Π΅Ρ€ΠΎΠ±ΠΈ ΠΊΠ°Π΄Π΅ бСшС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅ Π½Π° Ρ‚ΠΎΡ˜ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚, особСно кај Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈΡ‚Π΅ ΠΎΠ΄ Ρ€ΠΎΠ΄ΠΎΡ‚ Bacteroides (ΠΎΠ΄ 39% Π½Π° 45%). ΠŸΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° рСзистСнтни соСви (MRSA, CNS-MR ΠΈ VRE) бСшС рСчиси ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π΅Π½ Π²ΠΎ испитуваниот ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. Кај Π“Ρ€Π°ΠΌ-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, бСшС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° ESBL-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Π½Π° E. coli ΠΈ Enterobacter spp. Π²ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΡ‚ ΠΎΠ΄ 2017 Π΄ΠΎ 2019, Π° кај  Klebsiella pneumoniaΠ΅ Π²ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΡ‚ ΠΎΠ΄ 2017 ΠΈ 2018 имашС Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅, Π° Π²ΠΎ 2019 Π½Π°ΠΌΠ°Π»ΡƒΠ²Π°ΡšΠ΅ Π½Π° Ρ‚ΠΎΡ˜ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚. Π’ΠΎ однос Π½Π° ΠΊΠ°Ρ€Π±Π°ΠΏΠ΅Π½Π΅ΠΌ-рСзистСнтнитС (CR) Π΅Π½Ρ‚Π΅Ρ€ΠΎΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, кај К. pneumoniae бСшС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° рСзистСнтни ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Π²ΠΎ ситС Ρ‚Ρ€ΠΈ Π³ΠΎΠ΄ΠΈΠ½ΠΈ, Π΄ΠΎΠ΄Π΅ΠΊΠ°, ΠΏΠ°ΠΊ, кај Enterobacter spp. Ρ‚ΠΎΡ˜ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ бСшС повисок ΠΌΠ΅Ρ“Ρƒ 2017 ΠΈ 2018, Π° Π²ΠΎ 2019 Π³ΠΎΠ΄. статистички Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ ΠΏΠΎΠ½ΠΈΠ·ΠΎΠΊ. ΠŸΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΡ‚ Π½Π° CR- ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Π½Π° Pseudomonas aeruginosa бСшС ΠΏΠΎΠΌΠ΅Ρ“Ρƒ 30% ΠΈ 38%, Π° Π·Π° Acinetobacter spp. овој ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ бСшС ΠΌΠ΅Ρ“Ρƒ 81% ΠΈ 85%. Π—Π°ΠΊΠ»ΡƒΡ‡ΠΎΠΊ: ΠŸΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ Π΅ ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠΈΡ€Π°Π½ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΡ€Π°ΡšΠ΅ Π½Π° Π½Π°Ρ˜Ρ‡Π΅ΡΡ‚ΠΎ ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½ΠΈΡ‚Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΎΠ΄ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈΡ‚Π΅ ΠΎΠ΄ Ρ€Π°Π½ΠΈ, особСно присуството Π½Π° рСзистСнтни Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, со Ρ†Π΅Π» ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Π½Π° соодвСтни Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΈ ΠΈ Π²ΠΎΠ΄ΠΈΡ‡ΠΈ Π·Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π΅Π½ Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ Π½Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈΡ‚Π΅ Π½Π° Ρ€Π°Π½ΠΈ. &nbsp

    In Vitro Susceptibility Testing of Aspergillus and Non-Aspergillus Filamentous Moulds to Antifungal Agents: Evaluation of Three Different Methods

    Get PDF
    Abstract Aim: The aim of this study was to evaluate the suitability of Sensititre YeastOne (SYO) method for susceptibility profiles' determination of non-Aspergillus moulds and of E-test for Aspergillus spp. and non-Aspergillus moulds, in comparison with the M38-A reference broth microdilution (BMD) method. Material and Methods: A total of 33 clinical isolates of filamentous fungi were tested. Results: The agreement between E-test and BMD at Β± 2 dilutions was 82.4%, 83.3% and 82.4% for amphotericin B, itraconazole and voriconazole, respectively. The agreement between SYO and BMD at Β± 2 dilutions was 76.5%, 66.7% and 88.2% for amphotericin B, itraconazole and voriconazole, respectively. The majority of differing results are due to higher MICs with the reference method. In particular, SYO was unable to detect some of the potentially amphotericin B resistant strains. We found that both E-test and SYO method were reproducible and served as suitable methods for antifungal susceptibility testing of moulds. Conclusion: In conclusion, both E-test and SYO method are promising, but require further investigation to identify the optimum conditions for their use in testing of susceptibility profiles of filamentous fungi to antifungal agents

    Π•Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Π° Π½Π° (1,3)--d-Π³Π»ΠΈΠΊΠ°Π½ СсСј Π²ΠΎ дијагноза Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ со Аspergillus

    Get PDF
    Invasive fungal infections caused by Aspergillus are a significant problem in immunocompromised and critically ill patients and associated with increased morbidity and mortality. Early diagnosis of invasive aspergillosis is still a big clinical and diagnostic challenge. Conventional methods are not sensitive enough, and therefore, there is a need for rapid, more sensitive methods for early diagnosis of invasive fungal infections with Aspergillus. The aim of this study was to evaluate the diagnostic performance, sensitivity and specificity of serological panfungal (1,3)-b-D-glucan marker compared to conventional method for diagnosis of invasive fungal infections with Aspergillus. Material and methods: Specimens of 125 patients divided into 4 groups (group I - immune deficiency, group II - prolonged ICU stay, group III - chronic aspergillosis, group IV - cystic fibrosis), classified according to clinical diagnosis and EORTC/MSG criteria, were analyzed at the Institute of Microbiology and Parasitology, with conventional and serological methods, during a period of two years. Results: A total of 71 isolates of Aspergillus were confirmed in this study. Four isolates were recovered from bloodculture of patients with primary immune deficiency. With BAL culture, Aspergillus was detected in the group of chronic aspergillosis (63.33%), followed by the groups of cystic fibrosis (56.67%), primary immune deficiency (51.43%), and the group with prolonged ICU stay (43.33%). Sensitivity and specificity of BAL culture were: 64.29% and 100%, 59.09% and 100%, 54.55% and 12.5%, 100% and 54.17%, in I, II, III and IV group, respectively. In 79.1% (53/67) from positive BAL cultures in all groups, A. fumigatus was confirmed, of which, 32.1% (17/53) in group III, followed by group I – 26.42% (14/53) and group IV – 26.42% (14/53), and 15.1% (8/53) in group II. Other species confirmed in BAL were A. flavus 16.42% (11/67) and A.terreus 4.48% (3/67). Sensitivity and specificity of the serological panfungal (1,3)-b-D-glucan (BDG) marker were: 64.71% and 85.71%, 50% and 87.5%, 36.36% and 50%, in groups I, II and III, respectively. No positive findings of the panfungal (1,3)-b-D-glucan (BDG) marker were found in the group with cystic fibrosis. Conclusion: The results obtained in this study have demonstrated that a positive (1,3)-b-D-glucan assay highlights the value of this test as a diagnostic adjunct in the serodiagnosis of invasive fungal infections with Aspergillus, and along with the results from conventional mycological investigation, helped in reaching a timely antifungal treatment with a favorable clinical outcome. Β Π˜Π½Π²Π°Π·ΠΈΠ²Π½ΠΈΡ‚Π΅ Ρ„ΡƒΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ со Aspergillus прСтставуваат сСриозСн ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ кај ΠΈΠΌΡƒΠ½ΠΎΠΊΠΎΠΌΠΏΡ€ΠΎΠΌΠΈΡ‚ΠΈΡ€Π°Π½ΠΈΡ‚Π΅ Π»ΠΈΡ†Π° ΠΈ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎ Π±ΠΎΠ»Π½ΠΈΡ‚Π΅ Π»ΠΈΡ†Π°, ΠΈ сС асоцирани со Π·Π³ΠΎΠ»Π΅ΠΌΠ΅Π½ ΠΌΠΎΡ€Π±ΠΈΠ΄ΠΈΡ‚Π΅Ρ‚ ΠΈ ΠΌΠΎΡ€Ρ‚Π°Π»ΠΈΡ‚Π΅Ρ‚. Π Π°Π½Π° дијагноза Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Π°Ρ‚Π° аспСргилоза Π΅ сѐ ΡƒΡˆΡ‚Π΅ Π³ΠΎΠ»Π΅ΠΌ ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΈ ΠΈ Π΄ΠΈΡ˜Π°Π³Π½ΠΎΡΡ‚ΠΈΡ‡ΠΊΠΈ ΠΏΡ€Π΅Π΄ΠΈΠ·Π²ΠΈΠΊ. ΠšΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π½Π΅ сС Π΄ΠΎΠ²ΠΎΠ»Π½ΠΎ сСнзитивни, ΠΈ Π·Π°Ρ€Π°Π΄ΠΈ Ρ‚ΠΎΠ°, сС Π½Π°ΠΌΠ΅Ρ‚Π½ΡƒΠ²Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π·Π° Π±Ρ€Π·ΠΈ ΠΈ посСнзитивни ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° Ρ€Π°Π½Π° дијагноза Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈ Ρ„ΡƒΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ со Aspergillus. Π¦Π΅Π»Ρ‚Π° Π½Π° ΠΎΠ²Π°Π° ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π° бСшС Π΄Π° сС Π΅Π²Π°Π»ΡƒΠΈΡ€Π° Π΄ΠΈΡ˜Π°Π³Π½ΠΎΡΡ‚ΠΈΡ‡ΠΊΠΈΠΎΡ‚ пСрформанс, сСнзитивноста ΠΈ спСцифичноста Π½Π° ΡΠ΅Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΠΎΡ‚ ΠΏΠ°Π½Ρ„ΡƒΠ½Π³Π°Π»Π΅Π½ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ спорСдСно со ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π° дијагноза Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈΡ‚Π΅ Ρ„ΡƒΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ со Aspergillus. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ: ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ ΠΎΠ΄ 125 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, ΠΏΠΎΠ΄Π΅Π»Π΅Π½ΠΈ Π²ΠΎ 4 Π³Ρ€ΡƒΠΏΠΈ (Π³Ρ€ΡƒΠΏΠ° I - ΠΈΠΌΡƒΠ½ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚, Π³Ρ€ΡƒΠΏΠ° II - ΠΏΡ€ΠΎΠ»ΠΎΠ½Π³ΠΈΡ€Π°Π½ ΠΏΡ€Π΅ΡΡ‚ΠΎΡ˜ Π²ΠΎ Π•Π˜Π›, Π³Ρ€ΡƒΠΏΠ° III - Ρ…Ρ€ΠΎΠ½ΠΈΡ‡Π½Π° аспСргилоза, Π³Ρ€ΡƒΠΏΠ° IV - цистична Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π°), ΠΈ класифицирани спорСд ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠ°Ρ‚Π° дијагноза ΠΈ EORTC/MSG ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡƒΠΌΠΈΡ‚Π΅, Π±Π΅Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½ΠΈ Π½Π° Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ΠΎΡ‚ Π·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°, со ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΈ ΡΠ΅Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ, Π²ΠΎ Ρ‚Π΅ΠΊ Π½Π° Π΄Π²Π΅-годишСн ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ: Π’ΠΊΡƒΠΏΠ½ΠΎ 71 ΠΈΠ·ΠΎΠ»Π°Ρ‚ Π½Π° Aspergillus Π±Π΅Π° ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½ΠΈ Π²ΠΎ ΠΎΠ²Π°Π° ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π°. Π§Π΅Ρ‚ΠΈΡ€ΠΈ ΠΈΠ·ΠΎΠ»Π°Ρ‚ΠΈ Π±Π΅Π° Π΄ΠΎΠΊΠ°ΠΆΠ°Π½ΠΈ Π²ΠΎ Ρ…Π΅ΠΌΠΎΠΊΡƒΠ»Ρ‚ΡƒΡ€Π°, кај ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ со ΠΏΡ€ΠΈΠΌΠ°Ρ€Π΅Π½ ΠΈΠΌΡƒΠ½ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚. Π‘ΠΎ ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π° Π½Π° БАЛ, Aspergillus Π½Π°Ρ˜Ρ‡Π΅ΡΡ‚ΠΎ бСшС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ Π²ΠΎ Π³Ρ€ΡƒΠΏΠ°Ρ‚Π° Π½Π° Ρ…Ρ€ΠΎΠ½ΠΈΡ‡Π½Π° аспСргилоза (63,33%), ΠΏΠΎ ΡˆΡ‚ΠΎ слСдуваа Π³Ρ€ΡƒΠΏΠΈΡ‚Π΅ со цистична Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° (56,67%), ΠΏΡ€ΠΈΠΌΠ°Ρ€Π΅Π½ ΠΈΠΌΡƒΠ½ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ (51,43%), ΠΈ Π³Ρ€ΡƒΠΏΠ°Ρ‚Π° Π»ΠΈΡ†Π° со ΠΏΡ€ΠΎΠ»ΠΎΠ½Π³ΠΈΡ€Π°Π½ ΠΏΡ€Π΅ΡΡ‚ΠΎΡ˜ Π²ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†ΠΈΡ‚Π΅ Π·Π° ΠΈΠ½Ρ‚Π΅Π½Π·ΠΈΠ²Π½ΠΎ Π»Π΅ΠΊΡƒΠ²Π°ΡšΠ΅ (43,33%). БСнзитивноста ΠΈ спСцифичноста Π½Π° ΠΊΡƒΠ»Ρ‚ΡƒΡ€ΠΈΡ‚Π΅ Π½Π° БАЛ Π±Π΅Π°: 64,29% ΠΈ 100%, 59,09% ΠΈ 100%, 54,55% ΠΈ 12,5%, 100% ΠΈ 54,17%, Π²ΠΎ I, II, III ΠΈ IV Π³Ρ€ΡƒΠΏΠ°, соодвСтно. Π’ΠΎ 79,1% (53/67) ΠΎΠ΄ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ ΠΊΡƒΠ»Ρ‚ΡƒΡ€ΠΈ Π½Π° БАЛ Π²ΠΎ ситС Π³Ρ€ΡƒΠΏΠΈ, бСшС Π΄ΠΎΠΊΠ°ΠΆΠ°Π½ A.fumigatus, ΠΎΠ΄ ΠΊΠΎΠΈ, 32,1% (17/53) ΠΎΠ΄ Π³Ρ€ΡƒΠΏΠ° III, ΠΏΠΎΡ‚ΠΎΠ° 26,42 % (14/53) ΠΎΠ΄ Π³Ρ€ΡƒΠΏΠ° I ΠΈ 26,42% (14/53) ΠΎΠ΄ Π³Ρ€ΡƒΠΏΠ° IV, ΠΊΠ°ΠΊΠΎ ΠΈ 15,1% (8/53) ΠΎΠ΄ Π³Ρ€ΡƒΠΏΠ° II. Π”Ρ€ΡƒΠ³ΠΈ спСциСси ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½ΠΈ Π²ΠΎ БАЛ Π±Π΅Π° A.flavus 16,42% (11/67) ΠΈ A.terreus 4,48% (3/67). БСнзитивноста ΠΈ спСцифичноста Π½Π° ΡΠ΅Ρ€ΠΎΠ»ΠΎΡˆΠΊΠΈΠΎΡ‚ ΠΏΠ°Π½Ρ„ΡƒΠ½Π³Π°Π»Π΅Π½ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ (BDG) ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ Π±Π΅Π°: 64,71% ΠΈ 85,71%, 50% ΠΈ 87,5%, 36,36% ΠΈ 50%, Π²ΠΎ Π³Ρ€ΡƒΠΏΠΈΡ‚Π΅ I, II ΠΈ III, соодвСтно. НС Π±Π΅Π° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€Π°Π½ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈ Π½Π°ΠΎΠ΄ΠΈ ΠΎΠ΄ ΠΏΠ°Π½Ρ„ΡƒΠ½Π³Π°Π»Π½ΠΈΠΎΡ‚ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ (BDG) ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ Π²ΠΎ Π³Ρ€ΡƒΠΏΠ°Ρ‚Π° со цистична Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π°. Π—Π°ΠΊΠ»ΡƒΡ‡ΠΎΠΊ: Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΎΠ΄ ΠΎΠ²Π°Π° ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π° ΠΏΠΎΠΊΠ°ΠΆΠ°Π° Π΄Π΅ΠΊΠ° ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π΅Π½ Π½Π°ΠΎΠ΄ Π½Π° (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ ја истакнува врСдноста Π½Π° овој тСст ΠΊΠ°ΠΊΠΎ Π΄ΠΈΡ˜Π°Π³Π½ΠΎΡΡ‚ΠΈΡ‡ΠΊΠΎ Π½Π°Π΄ΠΎΠΏΠΎΠ»Π½ΡƒΠ²Π°ΡšΠ΅ Π²ΠΎ ΡΠ΅Ρ€ΠΎΠ΄ΠΈΡ˜Π°Π³Π½ΠΎΠ·Π°Ρ‚Π° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈΡ‚Π΅ Ρ„ΡƒΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ со Aspergillus, ΠΈ Π·Π°Π΅Π΄Π½ΠΎ со Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΎΠ΄ ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ миколошки ΠΈΡΠΏΠΈΡ‚ΡƒΠ²Π°ΡšΠ°, ΠΏΠΎΠΌΠ°Π³Π°Π°Ρ‚ Π²ΠΎ Π½Π°Π²Ρ€Π΅ΠΌΠ΅Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Π½Π° Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»Π½Π° Ρ‚Π΅Ρ€Π°ΠΏΠΈΡ˜Π°, ΠΈ ΠΏΠΎΡΡ‚ΠΈΠ³Π½ΡƒΠ²Π°ΡšΠ΅ ΠΏΠΎΠ²ΠΎΠ»Π΅Π½ ΠΊΠ»ΠΈΠ½ΠΈΡ‡ΠΊΠΈ исход.

    Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π° Π½Π° ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Π°Ρ‚Π° ΠΎΠ΄ усната ΠΏΡ€Π°Π·Π½ΠΈΠ½Π° Π½Π° Π΅Π³Π·ΠΎΡ‚ΠΈΡ‡Π½ΠΈ Π·ΠΌΠΈΠΈ Ρ‡ΡƒΠ²Π°Π½ΠΈ ΠΊΠ°ΠΊΠΎ домашни ΠΌΠΈΠ»Π΅Π½ΠΈΡ†ΠΈ

    Get PDF
    In recent years, snakes have become suitable pets for people with little spare time. By buying these animals people ignore the fact that they carry many microorganisms that are pathogenic for humans. The idea of ​​this study was to identify the microorganisms from the oral cavity of exotic snakes kept as pets in the Republic of North Macedonia, which can help in the treatment of bite infections if they occur. The study comprised 30 snakes of 9 species, from 3 families of non-venomous snakes: Pythonidae, Boidae and Colubridae. Snakes are part of the 5 largest collections of exotic snakes in the Republic of North Macedonia. Only one swab from the oral cavity was taken from each snake. The brushes were cultured and microscopically analyzed at the Institute of Microbiology and Parasitology at the Faculty of Medicine in Skopje. From 59 isolated microorganisms from the oral cavity of 30 exotic snakes, 37.3% were Gram-positive bacteria, 61.01% were Gram-negative bacteria and 1.69% were fungi. Of the total number of microorganisms, Pseudomonas aeruginosa was predominant with 27.11%, Providencia rettgeri / Proteus vulgaris with 18.64% and KONS / Micrococcus luteus with 16.94%. Pseudomonas aeruginosa was present in all three snake families, with 62.5% of the snake in the fam. Pythonidae; 50% in the fam. Boidae and 50% in the fam. Colubridae. The isolate Providencia rettgeri / Proteus vulgaris was most frequently found in the fam. Colubridae with 71.43%, followed by fam. Pythonidae with 12.5%, but was not isolated in any specimen of the fam. Boidae. The microbiome of the non-venomous snakes is composed of Gram-positive bacteria in healthy snakes, but also in snakes kept in inadequate hygienic conditions. Gram-negative bacteria were predominant, of which the most significant was the presence of multiple drug resistance Pseudomonas aeruginosa. Snakes as pets require proper knowledge of terms and conditions.ПослСднивС Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π·ΠΌΠΈΠΈΡ‚Π΅ станаа Π°ΠΊΡ‚ΡƒΠ΅Π»Π½ΠΈ домашни ΠΌΠΈΠ»Π΅Π½ΠΈΡ†ΠΈ Π·Π° Π»ΡƒΡ“Π΅Ρ‚ΠΎ ΠΊΠΎΠΈ ΠΈΠΌΠ°Π°Ρ‚ ΠΌΠ°Π»ΠΊΡƒ слободно Π²Ρ€Π΅ΠΌΠ΅. Но, ΠΏΡ€ΠΈ ΠΊΡƒΠΏΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΎΠ²ΠΈΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΈ сС Π·Π°Π½Π΅ΠΌΠ°Ρ€ΡƒΠ²Π° Ρ„Π°ΠΊΡ‚ΠΎΡ‚ Π΄Π΅ΠΊΠ° сС носитСли Π½Π° Π³ΠΎΠ»Π΅ΠΌ Π±Ρ€ΠΎΡ˜ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΈ ΠΊΠΎΠΈ сС ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΈ Π·Π° Ρ‡ΠΎΠ²Π΅ΠΊΠΎΡ‚. Π˜Π΄Π΅Ρ˜Π°Ρ‚Π° Π½Π° овој Ρ‚Ρ€ΡƒΠ΄ бСшС Π΄Π° сС ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΡƒΠ²Π°Π°Ρ‚ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π²ΠΎ усната ΠΏΡ€Π°Π·Π½ΠΈΠ½Π° кај Π΅Π³Π·ΠΎΡ‚ΠΈΡ‡Π½ΠΈ Π·ΠΌΠΈΠΈ ΠΊΠΎΠΈ сС Ρ‡ΡƒΠ²Π°Π°Ρ‚ ΠΊΠ°ΠΊΠΎ домашни ΠΌΠΈΠ»Π΅Π½ΠΈΡ†ΠΈ Π²ΠΎ Π Π΅ΠΏΡƒΠ±Π»ΠΈΠΊΠ° Π‘Π΅Π²Π΅Ρ€Π½Π° МакСдонија, со ΡˆΡ‚ΠΎ Π±ΠΈ ΠΏΠΎΠΌΠΎΠ³Π½Π°Π»Π΅ Π²ΠΎ Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ΠΎΡ‚  Π½Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΡΠ½ΡƒΠ²Π°ΡšΠ΅.  Π’ΠΎ ΡΡ‚ΡƒΠ΄ΠΈΡ˜Π°Ρ‚Π° сС ΠΎΠΏΡ„Π°Ρ‚Π΅Π½ΠΈ 30 Π·ΠΌΠΈΠΈ ΠΎΠ΄ 9 Π²ΠΈΠ΄ΠΎΠ²ΠΈ, ΠΎΠ΄ 3 Ρ„Π°ΠΌΠΈΠ»ΠΈΠΈ Π½Π° Π½Π΅ΠΎΡ‚Ρ€ΠΎΠ²Π½ΠΈ Π·ΠΌΠΈΠΈ: Pythonidae, Boidae ΠΈ Colubridae. Π—ΠΌΠΈΠΈΡ‚Π΅ сС Π΄Π΅Π» ΠΎΠ΄ 5 најголСми ΠΊΠΎΠ»Π΅ΠΊΡ†ΠΈΠΈ Π½Π° Π΅Π³Π·ΠΎΡ‚ΠΈΡ‡Π½ΠΈ Π·ΠΌΠΈΠΈ Π²ΠΎ Π Π΅ΠΏΡƒΠ±Π»ΠΈΠΊΠ° Π‘Π΅Π²Π΅Ρ€Π½Π° МакСдонија. Од сСкоја змија бСшС Π·Π΅ΠΌΠ΅Π½ само ΠΏΠΎ Π΅Π΄Π΅Π½ брис ΠΎΠ΄ усната ΡˆΡƒΠΏΠ»ΠΈΠ½Π°. БрисСвитС Π±Π΅Π° ΠΊΡƒΠ»Ρ‚ΡƒΡ€Π΅Π»Π½ΠΎ ΠΈ микроскопски ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΡƒΠ²Π°Π½ΠΈ Π½Π° Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ΠΎΡ‚ Π·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° ΠΈ ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π½Π° ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΈΠΎΡ‚ Ρ„Π°ΠΊΡƒΠ»Ρ‚Π΅Ρ‚ ΠΏΡ€ΠΈ УКИМ Π²ΠΎ БкопјС. Од Π²ΠΊΡƒΠΏΠ½ΠΎ 59 ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΈ ΠΎΠ΄ усната ΠΏΡ€Π°Π·Π½ΠΈΠ½Π° Π½Π° 30 Π΅Π³Π·ΠΎΡ‚ΠΈΡ‡Π½ΠΈ Π·ΠΌΠΈΠΈ, 37,3% Π±Π΅Π° Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, 61,01% Π±Π΅Π° Π“Ρ€Π°ΠΌ-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ 1,69% Π±Π΅Π° Π³Π°Π±ΠΈ. Π”ΠΎΠΌΠΈΠ½Π°Π½Ρ‚Π½ΠΈ Π±Π΅Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈΡ‚Π΅ Pseudomonas aeruginosa со 27,11%, Providencia rettgeri / Proteus vulgaris со 18,64% ΠΈ KONS / Micrococcus luteus со 16,94%. Pseudomonas aeruginosa бСшС застапСн кај ситС Ρ‚Ρ€ΠΈ Ρ„Π°ΠΌΠΈΠ»ΠΈΠΈ Π½Π° Π·ΠΌΠΈΠΈ, ΠΈ Ρ‚ΠΎΠ° со 62,5% кај Ρ„Π°ΠΌ. Pythonidae, 50% кај Ρ„Π°ΠΌ. Boidae ΠΈ 50% кај Ρ„Π°ΠΌ. Colubridae. Π˜Π·ΠΎΠ»Π°Ρ‚ΠΎΡ‚ Providencia rettgeri /Proteus vulgaris бСшС Π½Π°Ρ˜ΠΌΠ½ΠΎΠ³Ρƒ присутСн кај Ρ„Π°ΠΌ. Colubridea со 71,43, ΠΏΠΎΡ‚ΠΎΠ° кај Ρ„Π°ΠΌ. Pythonidae 12,5%, Π½ΠΎ Π²ΠΎΠΎΠΏΡˆΡ‚ΠΎ Π½Π΅ бСшС ΠΈΠ·ΠΎΠ»ΠΈΡ€Π°Π½ кај Π½ΠΈΡ‚Ρƒ Π΅Π΄Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΊ ΠΎΠ΄ Ρ„Π°ΠΌ. Boidae. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌΠΎΡ‚ Π½Π° Π½Π΅ΠΎΡ‚Ρ€ΠΎΠ²Π½ΠΈΡ‚Π΅ Π·ΠΌΠΈΠΈ бСшС составСн ΠΎΠ΄ Π“Ρ€Π°ΠΌ-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ кај Π·Π΄Ρ€Π°Π²ΠΈ Π·ΠΌΠΈΠΈ. Кај Π·ΠΌΠΈΠΈΡ‚Π΅ Ρ‡ΡƒΠ²Π°Π½ΠΈ Π²ΠΎ нСсоодвСтни хигиСнски услови  ΠΏΡ€Π΅Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€Π°Π° Π“Ρ€Π°ΠΌ-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ, ΠΎΠ΄ ΠΊΠΎΠΈ Π½Π°Ρ˜Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ бСшС присуството Π½Π° Pseudomonas aeruginosa, кој чСсто Π΅ ΠΎΡ‚ΠΏΠΎΡ€Π΅Π½ Π½Π° повСќС Π³Ρ€ΡƒΠΏΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΈ срСдства. Π—ΠΌΠΈΠΈΡ‚Π΅ ΠΊΠ°ΠΊΠΎ домашни ΠΌΠΈΠ»Π΅Π½ΠΈΡ†ΠΈ Π±Π°Ρ€Π°Π°Ρ‚ соодвСтно познавањС Π½Π° условитС Π·Π° Ρ‡ΡƒΠ²Π°ΡšΠ΅ ΠΈ Π½Π΅Π³Π°

    Variation in HRM profile of ITS regions.

    No full text
    <p>The negative first derivative (-dF/dt) of the normalized melt curve of rDNA ITS1, ITS2 and full-length ITS region of <i>C</i>. <i>albicans</i> and <i>P</i>. <i>kudriavzevii</i> are shown.</p

    Euclidean distance is a poor metric for comparing melt curves.

    No full text
    <p>(A) Melt profiles of eight samples of <i>C</i>. <i>albicans</i> strain SC5314 illustrating the variation inherent in melt curve acquisition. (B) Dendrogram of nearest neighbor clustering results using Euclidean distances. The four melt curves obtained for each strain in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173320#pone.0173320.t001" target="_blank">Table 1</a> were averaged and the Euclidean distances between the averaged curves was clustered.</p

    The effect of DTW step patterns and window sizes on melt curve clustering.

    No full text
    <p>(A) DTW distances between all 204 melt curves obtained for the 51 strains in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173320#pone.0173320.t001" target="_blank">Table 1</a> were calculated using each of the possible Rabiner and Juang step patterns and slope combinations (21). Distances were calculated with no window constraint or with the window size varied from 1 to 20. Dots indicate successful nearest-neighbor clustering of all 204 melt curves into 18 species-specific groups. Green dots indicate step pattern and slope combinations successful even in the absence of window constraints. Red dots represent those distances for which clustering was successful only with the indicated window size. (B) The minimum silhouette width (34) as a function of window size for step pattern Type 6b.</p

    Melt profiles differ between <i>C</i>. <i>dubliniensis</i> subtypes.

    No full text
    <p>The melt profile of a <i>C</i>. <i>dubliniensis</i> Genotype 1 strain, clinical isolate CI_39o, and the two database standards, both of Genotype 2, is shown.</p
    corecore