18 research outputs found
ΠΠ°ΡΡΠ΅ΡΡΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠΊΠΈ ΠΈΠ·ΠΎΠ»Π°ΡΠΈ ΠΎΠ΄ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΠΎΠ΄ ΡΠ°Π½ΠΈ β ΡΡΠΈΠ³ΠΎΠ΄ΠΈΡΠ½Π° ΡΡΡΠ΄ΠΈΡΠ°
Aim: The aim of our study was to determine the most common bacteria isolated from wound samples and tΠΎ compare the frequency of the resistant bacteria isolated over a 3-year period. Material and methods: During a three years period (2017-2019) a total of 11 863 wound samples (wound swabs, punctuates, exudates, tissue, etc.) were obtained from the hospitalized patients in the University Clinics of the ,,Mother Theresaβ campus, the City hospital ,,8th Septemberβ and the University Clinic for surgical diseases ,,St. Naum Ohridskiβ in Skopje. All samples were processed at the Institute of Microbiology and Parasitology, Faculty of Medicine, Skopje. They were examined by standard microbiology techniques. Identification and susceptibility of microorganisms were done by both standard methods and automatized Vitek 2 system. Results: Out of a total number of samples, which was 3 463 in 2017, 4 127 in 2018 and 4 273 in 2019, positive were 2 068 (60%), 2 302 (55.8%) and 2 387 (55.9%), respectively. From the total of aerobes/facultative anaerobes (2 758, 2 949 and 3 279 in three consecutive years, 2017, 2018 and 2019, respectively), Staphylococcus aureus was the most predominant isolate (19.5%, 16.6%, 16.9%) followed by Enterococcus spp (16%, 16%, 16.7%), Pseudomonas aeruginosa (12%, 13%, 12.7%) and E. coli (10%, 10.4%, 10.7%). Considering anaerobic bacteria, the percentage of Gram positive anaerobes (Peptostreptococcus) has decreased from 33% to 18% out of a total number of anaerobes, unlike Gram negative anaerobes in which the increasing percentage was mostly observed in bacteria of the genus Bacteroides (from 39% to 45%). The percentage of the resistant strains of MRSA, CNS-MR and VRE was almost the same in that period. In Gram-negatives the percentage of ESBL-positive isolates of E. coli and Enterobacter spp. increased consecutively from 2017 to 2019. The increase in the percentage of resistant strains was more noticeable in ESBL-positive isolates of Klebsiella pneumonia between 2017 and 2018, but in 2019 a percentage decrease can be observed. Considering carbapenem-resistant (CR) Enterobacterales, an increase in the resistance was noticeable in K. pneumonia. The increase in the percentage of resistant strains in Enterobacter spp. between 2017 and 2018, as well as the decrease between 2018 and 2019 was statistically significant. The percentage of CR-isolates of Pseudomonas aeruginosa was from 30% to 38% and for Acinetobacter spp. this percentage was from 81% to 85%. Conclusion: The knowledge of the most commonly isolated bacterial pathogens, especially the presence of resistant bacteria, is crucial and should be continuously monitored in order to understand, construct and update effective treatment algorithms and guidelines.Π¦Π΅Π»: Π¦Π΅Π» Π½Π° ΡΡΡΠ΄ΠΈΡΠ°ΡΠ° Π΅ Π΄Π° ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π°Ρ Π½Π°ΡΡΠ΅ΡΡΠΈΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½ΠΈ ΠΎΠ΄ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΠΎΠ΄ ΡΠ°Π½ΠΈ ΠΈ Π΄Π° ΡΠ΅ ΡΠΏΠΎΡΠ΅Π΄ΠΈ ΠΏΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ Π²ΠΎ ΡΡΠΈΠ³ΠΎΠ΄ΠΈΡΠ½ΠΈΠΎΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. ΠΠ°ΡΠ΅ΡΠΈΡΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ: ΠΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΎΠ΄ ΡΡΠΈ Π³ΠΎΠ΄ΠΈΠ½ΠΈ (2017-2019) Π±Π΅Π° Π·Π΅ΠΌΠ΅Π½ΠΈ Π²ΠΊΡΠΏΠ½ΠΎ 11 863 ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΠΎΠ΄ ΡΠ°Π½ΠΈ (Π±ΡΠΈΡΠ΅Π²ΠΈ, ΠΏΡΠ½ΠΊΡΠ°ΡΠΈ, Π΅ΠΊΡΡΠ΄Π°ΡΠΈ, ΡΠΊΠΈΠ²ΠΎ ΠΈ Π΄Ρ.) ΠΎΠ΄ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΈ Ρ
ΠΎΡΠΏΠΈΡΠ°Π»ΠΈΠ·ΠΈΡΠ°Π½ΠΈ Π²ΠΎ Π£Π½ΠΈΠ²Π΅ΡΠ·ΠΈΡΠ΅ΡΡΠΊΠΈΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ Π²ΠΎ ΠΊΠ°ΠΌΠΏΡΡΠΎΡ ,,ΠΠ°ΡΠΊΠ° Π’Π΅ΡΠ΅Π·Π°β, ΠΡΠ°Π΄ΡΠΊΠ°ΡΠ° Π±ΠΎΠ»Π½ΠΈΡΠ° ,,8. Π‘Π΅ΠΏΡΠ΅ΠΌΠ²ΡΠΈβ Π£Π½ΠΈΠ²Π΅ΡΠ·ΠΈΡΠ΅ΡΡΠΊΠ°ΡΠ° ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ° Π·Π° Ρ
ΠΈΡΡΡΡΠΊΠΈ Π±ΠΎΠ»Π΅ΡΡΠΈ ,,Π‘Π². ΠΠ°ΡΠΌ ΠΡ
ΡΠΈΠ΄ΡΠΊΠΈβ Π²ΠΎ Π‘ΠΊΠΎΠΏΡΠ΅. Π‘ΠΈΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ Π±Π΅Π° ΠΎΠ±ΡΠ°Π±ΠΎΡΠ΅Π½ΠΈ Π½Π° ΠΠ½ΡΡΠΈΡΡΡΠΎΡ Π·Π° ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΈ ΠΏΠ°ΡΠ°Π·ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡΠ°, ΠΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈ ΡΠ°ΠΊΡΠ»ΡΠ΅Ρ, Π‘ΠΊΠΎΠΏΡΠ΅. ΠΠ° ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° Π±Π΅Π° ΠΊΠΎΡΠΈΡΡΠ΅Π½ΠΈ ΡΡΠ°Π½Π΄Π°ΡΠ΄Π½ΠΈ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΡΠΊΠΈ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡΠ°ΡΠ° Π½Π° Π±Π°ΠΊΡΠ΅ΡΠΈΠΈΡΠ΅, ΠΊΠ°ΠΊΠΎ ΠΈ ΠΎΠ΄ΡΠ΅Π΄ΡΠ²Π°ΡΠ΅ Π½Π° Π½ΠΈΠ²Π½Π°ΡΠ° ΠΎΡΠ΅ΡΠ»ΠΈΠ²ΠΎΡΡ ΠΊΠΎΠ½ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΈ ΡΡΠ΅Π΄ΡΡΠ²Π° Π±Π΅ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π΅Π½Π° ΡΠΎ ΡΡΠ°Π½Π΄Π°ΡΠ΄Π½ΠΈ ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠ°Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ (Vitek 2- ΡΠΈΡΡΠ΅ΠΌ). Π Π΅Π·ΡΠ»ΡΠ°ΡΠΈ: ΠΠ΄ Π²ΠΊΡΠΏΠ½ΠΈΠΎΡ Π±ΡΠΎΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΠΊΠΎΡ ΠΈΠ·Π½Π΅ΡΡΠ²Π°ΡΠ΅ 3 463 Π²ΠΎ 2017, 4 127 Π²ΠΎ 2018 ΠΈ 4 273 Π²ΠΎ 2019 Π³ΠΎΠ΄., ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈ Π±Π΅Π° 2 068 (60%), 2 302 (55,8%) ΠΈ 2 387 (55,9%), ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π½ΠΎ. ΠΠ΄ Π²ΠΊΡΠΏΠ½ΠΈΠΎΡ Π±ΡΠΎΡ Π°Π΅ΡΠΎΠ±ΠΈ/ΡΠ°ΠΊΡΠ»ΡΠ°ΡΠΈΠ²Π½ΠΎ Π°Π½Π°Π΅ΡΠΎΠ±ΠΈ (2 758, 2 949 ΠΈ 3 279 Π²ΠΎ ΡΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π½ΠΈ Π³ΠΎΠ΄ΠΈΠ½ΠΈ, 2017, 2018 ΠΈ 2019 Π³ΠΎΠ΄.), Π½Π°ΡΡΠ΅ΡΡΠΎ ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½Π° Π±Π΅ΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΡΠ°ΡΠ° Staphylococcus aureus (19,5%, 16,6% ΠΈ 16,9%), ΠΏΠΎΡΠΎΠ° Enterococcus spp (16%, 16% ΠΈ 16,7%), Pseudomonas aeruginosa (12%, 13% ΠΈ 12,7%) ΠΈ E. coli (10%, 10,4% ΠΈ 10,7%). ΠΠ΄ Π°Π½Π°Π΅ΡΠΎΠ±Π½ΠΈΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, Π±Π΅ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ΠΎ Π½Π°ΠΌΠ°Π»ΡΠ²Π°ΡΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° ΠΡΠ°ΠΌ-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡΠ΅ Π°Π½Π°Π΅ΡΠΎΠ±ΠΈ (Peptostreptococcus) ΠΎΠ΄ 33% Π½Π° 18%, ΠΎΠ΄ Π²ΠΊΡΠΏΠΈΠΎΡ Π±ΡΠΎΡ Π½Π° Π°Π½Π°Π΅ΡΠΎΠ±ΠΈ, Π·Π° ΡΠ°Π·Π»ΠΈΠΊΠ° ΠΎΠ΄ ΠΡΠ°ΠΌ-Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈΡΠ΅ Π°Π½Π°Π΅ΡΠΎΠ±ΠΈ ΠΊΠ°Π΄Π΅ Π±Π΅ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡΠ²Π°ΡΠ΅ Π½Π° ΡΠΎΡ ΠΏΡΠΎΡΠ΅Π½Ρ, ΠΎΡΠΎΠ±Π΅Π½ΠΎ ΠΊΠ°Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈΡΠ΅ ΠΎΠ΄ ΡΠΎΠ΄ΠΎΡ Bacteroides (ΠΎΠ΄ 39% Π½Π° 45%). ΠΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ ΡΠΎΠ΅Π²ΠΈ (MRSA, CNS-MR ΠΈ VRE) Π±Π΅ΡΠ΅ ΡΠ΅ΡΠΈΡΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ΅Π½ Π²ΠΎ ΠΈΡΠΏΠΈΡΡΠ²Π°Π½ΠΈΠΎΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. ΠΠ°Ρ ΠΡΠ°ΠΌ-Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, Π±Π΅ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡΠ²Π°ΡΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° ESBL-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈ ΠΈΠ·ΠΎΠ»Π°ΡΠΈ Π½Π° E. coli ΠΈ Enterobacter spp. Π²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΡ ΠΎΠ΄ 2017 Π΄ΠΎ 2019, Π° ΠΊΠ°Ρ Klebsiella pneumoniaΠ΅ Π²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΡ ΠΎΠ΄ 2017 ΠΈ 2018 ΠΈΠΌΠ°ΡΠ΅ Π·Π³ΠΎΠ»Π΅ΠΌΡΠ²Π°ΡΠ΅, Π° Π²ΠΎ 2019 Π½Π°ΠΌΠ°Π»ΡΠ²Π°ΡΠ΅ Π½Π° ΡΠΎΡ ΠΏΡΠΎΡΠ΅Π½Ρ. ΠΠΎ ΠΎΠ΄Π½ΠΎΡ Π½Π° ΠΊΠ°ΡΠ±Π°ΠΏΠ΅Π½Π΅ΠΌ-ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈΡΠ΅ (CR) Π΅Π½ΡΠ΅ΡΠΎΠ±Π°ΠΊΡΠ΅ΡΠΈΠΈ, ΠΊΠ°Ρ Π. pneumoniae Π±Π΅ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΡΠ²Π°ΡΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ ΠΈΠ·ΠΎΠ»Π°ΡΠΈ Π²ΠΎ ΡΠΈΡΠ΅ ΡΡΠΈ Π³ΠΎΠ΄ΠΈΠ½ΠΈ, Π΄ΠΎΠ΄Π΅ΠΊΠ°, ΠΏΠ°ΠΊ, ΠΊΠ°Ρ Enterobacter spp. ΡΠΎΡ ΠΏΡΠΎΡΠ΅Π½ΡΠΎΡ Π±Π΅ΡΠ΅ ΠΏΠΎΠ²ΠΈΡΠΎΠΊ ΠΌΠ΅ΡΡ 2017 ΠΈ 2018, Π° Π²ΠΎ 2019 Π³ΠΎΠ΄. ΡΡΠ°ΡΠΈΡΡΠΈΡΠΊΠΈ Π·Π½Π°ΡΠ°ΡΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠ·ΠΎΠΊ. ΠΡΠΎΡΠ΅Π½ΡΠΎΡ Π½Π° CR- ΠΈΠ·ΠΎΠ»Π°ΡΠΈ Π½Π° Pseudomonas aeruginosa Π±Π΅ΡΠ΅ ΠΏΠΎΠΌΠ΅ΡΡ 30% ΠΈ 38%, Π° Π·Π° Acinetobacter spp. ΠΎΠ²ΠΎΡ ΠΏΡΠΎΡΠ΅Π½Ρ Π±Π΅ΡΠ΅ ΠΌΠ΅ΡΡ 81% ΠΈ 85%. ΠΠ°ΠΊΠ»ΡΡΠΎΠΊ: ΠΠΎΡΡΠ΅Π±Π½ΠΎ Π΅ ΠΊΠΎΠ½ΡΠΈΠ½ΡΠΈΡΠ°Π½ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΡΠ°ΡΠ΅ Π½Π° Π½Π°ΡΡΠ΅ΡΡΠΎ ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½ΠΈΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΎΠ΄ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈΡΠ΅ ΠΎΠ΄ ΡΠ°Π½ΠΈ, ΠΎΡΠΎΠ±Π΅Π½ΠΎ ΠΏΡΠΈΡΡΡΡΠ²ΠΎΡΠΎ Π½Π° ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, ΡΠΎ ΡΠ΅Π» ΠΏΡΠΈΠΌΠ΅Π½Π° Π½Π° ΡΠΎΠΎΠ΄Π²Π΅ΡΠ½ΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΈ ΠΈ Π²ΠΎΠ΄ΠΈΡΠΈ Π·Π° Π΅ΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ ΡΡΠ΅ΡΠΌΠ°Π½ Π½Π° ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈΡΠ΅ Π½Π° ΡΠ°Π½ΠΈ.  
In Vitro Susceptibility Testing of Aspergillus and Non-Aspergillus Filamentous Moulds to Antifungal Agents: Evaluation of Three Different Methods
Abstract Aim: The aim of this study was to evaluate the suitability of Sensititre YeastOne (SYO) method for susceptibility profiles' determination of non-Aspergillus moulds and of E-test for Aspergillus spp. and non-Aspergillus moulds, in comparison with the M38-A reference broth microdilution (BMD) method. Material and Methods: A total of 33 clinical isolates of filamentous fungi were tested. Results: The agreement between E-test and BMD at Β± 2 dilutions was 82.4%, 83.3% and 82.4% for amphotericin B, itraconazole and voriconazole, respectively. The agreement between SYO and BMD at Β± 2 dilutions was 76.5%, 66.7% and 88.2% for amphotericin B, itraconazole and voriconazole, respectively. The majority of differing results are due to higher MICs with the reference method. In particular, SYO was unable to detect some of the potentially amphotericin B resistant strains. We found that both E-test and SYO method were reproducible and served as suitable methods for antifungal susceptibility testing of moulds. Conclusion: In conclusion, both E-test and SYO method are promising, but require further investigation to identify the optimum conditions for their use in testing of susceptibility profiles of filamentous fungi to antifungal agents
ΠΠ²Π°Π»ΡΠ°ΡΠΈΡΠ° Π½Π° (1,3)--d-Π³Π»ΠΈΠΊΠ°Π½ Π΅ΡΠ΅Ρ Π²ΠΎ Π΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎ Πspergillus
Invasive fungal infections caused by Aspergillus are a significant problem in immunocompromised and critically ill patients and associated with increased morbidity and mortality. Early diagnosis of invasive aspergillosis is still a big clinical and diagnostic challenge. Conventional methods are not sensitive enough, and therefore, there is a need for rapid, more sensitive methods for early diagnosis of invasive fungal infections with Aspergillus. The aim of this study was to evaluate the diagnostic performance, sensitivity and specificity of serological panfungal (1,3)-b-D-glucan marker compared to conventional method for diagnosis of invasive fungal infections with Aspergillus. Material and methods: Specimens of 125 patients divided into 4 groups (group I - immune deficiency, group II - prolonged ICU stay, group III - chronic aspergillosis, group IV - cystic fibrosis), classified according to clinical diagnosis and EORTC/MSG criteria, were analyzed at the Institute of Microbiology and Parasitology, with conventional and serological methods, during a period of two years. Results: A total of 71 isolates of Aspergillus were confirmed in this study. Four isolates were recovered from bloodculture of patients with primary immune deficiency. With BAL culture, Aspergillus was detected in the group of chronic aspergillosis (63.33%), followed by the groups of cystic fibrosis (56.67%), primary immune deficiency (51.43%), and the group with prolonged ICU stay (43.33%). Sensitivity and specificity of BAL culture were: 64.29% and 100%, 59.09% and 100%, 54.55% and 12.5%, 100% and 54.17%, in I, II, III and IV group, respectively. In 79.1% (53/67) from positive BAL cultures in all groups, A. fumigatus was confirmed, of which, 32.1% (17/53) in group III, followed by group I β 26.42% (14/53) and group IV β 26.42% (14/53), and 15.1% (8/53) in group II. Other species confirmed in BAL were A. flavus 16.42% (11/67) and A.terreus 4.48% (3/67). Sensitivity and specificity of the serological panfungal (1,3)-b-D-glucan (BDG) marker were: 64.71% and 85.71%, 50% and 87.5%, 36.36% and 50%, in groups I, II and III, respectively. No positive findings of the panfungal (1,3)-b-D-glucan (BDG) marker were found in the group with cystic fibrosis. Conclusion: The results obtained in this study have demonstrated that a positive (1,3)-b-D-glucan assay highlights the value of this test as a diagnostic adjunct in the serodiagnosis of invasive fungal infections with Aspergillus, and along with the results from conventional mycological investigation, helped in reaching a timely antifungal treatment with a favorable clinical outcome.
Β ΠΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈΡΠ΅ ΡΡΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎ Aspergillus ΠΏΡΠ΅ΡΡΡΠ°Π²ΡΠ²Π°Π°Ρ ΡΠ΅ΡΠΈΠΎΠ·Π΅Π½ ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΠΊΠ°Ρ ΠΈΠΌΡΠ½ΠΎΠΊΠΎΠΌΠΏΡΠΎΠΌΠΈΡΠΈΡΠ°Π½ΠΈΡΠ΅ Π»ΠΈΡΠ° ΠΈ ΠΊΡΠΈΡΠΈΡΠ½ΠΎ Π±ΠΎΠ»Π½ΠΈΡΠ΅ Π»ΠΈΡΠ°, ΠΈ ΡΠ΅ Π°ΡΠΎΡΠΈΡΠ°Π½ΠΈ ΡΠΎ Π·Π³ΠΎΠ»Π΅ΠΌΠ΅Π½ ΠΌΠΎΡΠ±ΠΈΠ΄ΠΈΡΠ΅Ρ ΠΈ ΠΌΠΎΡΡΠ°Π»ΠΈΡΠ΅Ρ. Π Π°Π½Π° Π΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Π°ΡΠ° Π°ΡΠΏΠ΅ΡΠ³ΠΈΠ»ΠΎΠ·Π° Π΅ ΡΡ ΡΡΡΠ΅ Π³ΠΎΠ»Π΅ΠΌ ΠΊΠ»ΠΈΠ½ΠΈΡΠΊΠΈ ΠΈ Π΄ΠΈΡΠ°Π³Π½ΠΎΡΡΠΈΡΠΊΠΈ ΠΏΡΠ΅Π΄ΠΈΠ·Π²ΠΈΠΊ. ΠΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π½Π΅ ΡΠ΅ Π΄ΠΎΠ²ΠΎΠ»Π½ΠΎ ΡΠ΅Π½Π·ΠΈΡΠΈΠ²Π½ΠΈ, ΠΈ Π·Π°ΡΠ°Π΄ΠΈ ΡΠΎΠ°, ΡΠ΅ Π½Π°ΠΌΠ΅ΡΠ½ΡΠ²Π° ΠΏΠΎΡΡΠ΅Π±Π° Π·Π° Π±ΡΠ·ΠΈ ΠΈ ΠΏΠΎΡΠ΅Π½Π·ΠΈΡΠΈΠ²Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π·Π° ΡΠ°Π½Π° Π΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈ ΡΡΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎ Aspergillus. Π¦Π΅Π»ΡΠ° Π½Π° ΠΎΠ²Π°Π° ΡΡΡΠ΄ΠΈΡΠ° Π±Π΅ΡΠ΅ Π΄Π° ΡΠ΅ Π΅Π²Π°Π»ΡΠΈΡΠ° Π΄ΠΈΡΠ°Π³Π½ΠΎΡΡΠΈΡΠΊΠΈΠΎΡ ΠΏΠ΅ΡΡΠΎΡΠΌΠ°Π½Ρ, ΡΠ΅Π½Π·ΠΈΡΠΈΠ²Π½ΠΎΡΡΠ° ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΠ° Π½Π° ΡΠ΅ΡΠΎΠ»ΠΎΡΠΊΠΈΠΎΡ ΠΏΠ°Π½ΡΡΠ½Π³Π°Π»Π΅Π½ ΠΌΠ°ΡΠΊΠ΅Ρ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ ΡΠΏΠΎΡΠ΅Π΄Π΅Π½ΠΎ ΡΠΎ ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ Π·Π° Π΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈΡΠ΅ ΡΡΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎ Aspergillus. ΠΠ°ΡΠ΅ΡΠΈΡΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ: ΠΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΠΎΠ΄ 125 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΈ, ΠΏΠΎΠ΄Π΅Π»Π΅Π½ΠΈ Π²ΠΎ 4 Π³ΡΡΠΏΠΈ (Π³ΡΡΠΏΠ° I - ΠΈΠΌΡΠ½ Π΄Π΅ΡΠΈΡΠΈΡ, Π³ΡΡΠΏΠ° II - ΠΏΡΠΎΠ»ΠΎΠ½Π³ΠΈΡΠ°Π½ ΠΏΡΠ΅ΡΡΠΎΡ Π²ΠΎ ΠΠΠ, Π³ΡΡΠΏΠ° III - Ρ
ΡΠΎΠ½ΠΈΡΠ½Π° Π°ΡΠΏΠ΅ΡΠ³ΠΈΠ»ΠΎΠ·Π°, Π³ΡΡΠΏΠ° IV - ΡΠΈΡΡΠΈΡΠ½Π° ΡΠΈΠ±ΡΠΎΠ·Π°), ΠΈ ΠΊΠ»Π°ΡΠΈΡΠΈΡΠΈΡΠ°Π½ΠΈ ΡΠΏΠΎΡΠ΅Π΄ ΠΊΠ»ΠΈΠ½ΠΈΡΠΊΠ°ΡΠ° Π΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π° ΠΈ EORTC/MSG ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌΠΈΡΠ΅, Π±Π΅Π° Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠ°Π½ΠΈ Π½Π° ΠΠ½ΡΡΠΈΡΡΡΠΎΡ Π·Π° ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΈ ΠΏΠ°ΡΠ°Π·ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡΠ°, ΡΠΎ ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΈ ΡΠ΅ΡΠΎΠ»ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ, Π²ΠΎ ΡΠ΅ΠΊ Π½Π° Π΄Π²Π΅-Π³ΠΎΠ΄ΠΈΡΠ΅Π½ ΠΏΠ΅ΡΠΈΠΎΠ΄. Π Π΅Π·ΡΠ»ΡΠ°ΡΠΈ: ΠΠΊΡΠΏΠ½ΠΎ 71 ΠΈΠ·ΠΎΠ»Π°Ρ Π½Π° Aspergillus Π±Π΅Π° ΠΏΠΎΡΠ²ΡΠ΄Π΅Π½ΠΈ Π²ΠΎ ΠΎΠ²Π°Π° ΡΡΡΠ΄ΠΈΡΠ°. Π§Π΅ΡΠΈΡΠΈ ΠΈΠ·ΠΎΠ»Π°ΡΠΈ Π±Π΅Π° Π΄ΠΎΠΊΠ°ΠΆΠ°Π½ΠΈ Π²ΠΎ Ρ
Π΅ΠΌΠΎΠΊΡΠ»ΡΡΡΠ°, ΠΊΠ°Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΈ ΡΠΎ ΠΏΡΠΈΠΌΠ°ΡΠ΅Π½ ΠΈΠΌΡΠ½ Π΄Π΅ΡΠΈΡΠΈΡ. Π‘ΠΎ ΠΊΡΠ»ΡΡΡΠ° Π½Π° ΠΠΠ, Aspergillus Π½Π°ΡΡΠ΅ΡΡΠΎ Π±Π΅ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ Π²ΠΎ Π³ΡΡΠΏΠ°ΡΠ° Π½Π° Ρ
ΡΠΎΠ½ΠΈΡΠ½Π° Π°ΡΠΏΠ΅ΡΠ³ΠΈΠ»ΠΎΠ·Π° (63,33%), ΠΏΠΎ ΡΡΠΎ ΡΠ»Π΅Π΄ΡΠ²Π°Π° Π³ΡΡΠΏΠΈΡΠ΅ ΡΠΎ ΡΠΈΡΡΠΈΡΠ½Π° ΡΠΈΠ±ΡΠΎΠ·Π° (56,67%), ΠΏΡΠΈΠΌΠ°ΡΠ΅Π½ ΠΈΠΌΡΠ½ Π΄Π΅ΡΠΈΡΠΈΡ (51,43%), ΠΈ Π³ΡΡΠΏΠ°ΡΠ° Π»ΠΈΡΠ° ΡΠΎ ΠΏΡΠΎΠ»ΠΎΠ½Π³ΠΈΡΠ°Π½ ΠΏΡΠ΅ΡΡΠΎΡ Π²ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠΈΡΠ΅ Π·Π° ΠΈΠ½ΡΠ΅Π½Π·ΠΈΠ²Π½ΠΎ Π»Π΅ΠΊΡΠ²Π°ΡΠ΅ (43,33%). Π‘Π΅Π½Π·ΠΈΡΠΈΠ²Π½ΠΎΡΡΠ° ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΠ° Π½Π° ΠΊΡΠ»ΡΡΡΠΈΡΠ΅ Π½Π° ΠΠΠ Π±Π΅Π°: 64,29% ΠΈ 100%, 59,09% ΠΈ 100%, 54,55% ΠΈ 12,5%, 100% ΠΈ 54,17%, Π²ΠΎ I, II, III ΠΈ IV Π³ΡΡΠΏΠ°, ΡΠΎΠΎΠ΄Π²Π΅ΡΠ½ΠΎ. ΠΠΎ 79,1% (53/67) ΠΎΠ΄ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡΠ΅ ΠΊΡΠ»ΡΡΡΠΈ Π½Π° ΠΠΠ Π²ΠΎ ΡΠΈΡΠ΅ Π³ΡΡΠΏΠΈ, Π±Π΅ΡΠ΅ Π΄ΠΎΠΊΠ°ΠΆΠ°Π½ A.fumigatus, ΠΎΠ΄ ΠΊΠΎΠΈ, 32,1% (17/53) ΠΎΠ΄ Π³ΡΡΠΏΠ° III, ΠΏΠΎΡΠΎΠ° 26,42 % (14/53) ΠΎΠ΄ Π³ΡΡΠΏΠ° I ΠΈ 26,42% (14/53) ΠΎΠ΄ Π³ΡΡΠΏΠ° IV, ΠΊΠ°ΠΊΠΎ ΠΈ 15,1% (8/53) ΠΎΠ΄ Π³ΡΡΠΏΠ° II. ΠΡΡΠ³ΠΈ ΡΠΏΠ΅ΡΠΈΠ΅ΡΠΈ ΠΏΠΎΡΠ²ΡΠ΄Π΅Π½ΠΈ Π²ΠΎ ΠΠΠ Π±Π΅Π° A.flavus 16,42% (11/67) ΠΈ A.terreus 4,48% (3/67). Π‘Π΅Π½Π·ΠΈΡΠΈΠ²Π½ΠΎΡΡΠ° ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΠ° Π½Π° ΡΠ΅ΡΠΎΠ»ΠΎΡΠΊΠΈΠΎΡ ΠΏΠ°Π½ΡΡΠ½Π³Π°Π»Π΅Π½ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ (BDG) ΠΌΠ°ΡΠΊΠ΅Ρ Π±Π΅Π°: 64,71% ΠΈ 85,71%, 50% ΠΈ 87,5%, 36,36% ΠΈ 50%, Π²ΠΎ Π³ΡΡΠΏΠΈΡΠ΅ I, II ΠΈ III, ΡΠΎΠΎΠ΄Π²Π΅ΡΠ½ΠΎ. ΠΠ΅ Π±Π΅Π° Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠ°Π½ΠΈ ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈ Π½Π°ΠΎΠ΄ΠΈ ΠΎΠ΄ ΠΏΠ°Π½ΡΡΠ½Π³Π°Π»Π½ΠΈΠΎΡ (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ (BDG) ΠΌΠ°ΡΠΊΠ΅Ρ Π²ΠΎ Π³ΡΡΠΏΠ°ΡΠ° ΡΠΎ ΡΠΈΡΡΠΈΡΠ½Π° ΡΠΈΠ±ΡΠΎΠ·Π°. ΠΠ°ΠΊΠ»ΡΡΠΎΠΊ: Π Π΅Π·ΡΠ»ΡΠ°ΡΠΈΡΠ΅ ΠΎΠ΄ ΠΎΠ²Π°Π° ΡΡΡΠ΄ΠΈΡΠ° ΠΏΠΎΠΊΠ°ΠΆΠ°Π° Π΄Π΅ΠΊΠ° ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π΅Π½ Π½Π°ΠΎΠ΄ Π½Π° (1,3)-b-D-Π³Π»ΠΈΠΊΠ°Π½ ΡΠ° ΠΈΡΡΠ°ΠΊΠ½ΡΠ²Π° Π²ΡΠ΅Π΄Π½ΠΎΡΡΠ° Π½Π° ΠΎΠ²ΠΎΡ ΡΠ΅ΡΡ ΠΊΠ°ΠΊΠΎ Π΄ΠΈΡΠ°Π³Π½ΠΎΡΡΠΈΡΠΊΠΎ Π½Π°Π΄ΠΎΠΏΠΎΠ»Π½ΡΠ²Π°ΡΠ΅ Π²ΠΎ ΡΠ΅ΡΠΎΠ΄ΠΈΡΠ°Π³Π½ΠΎΠ·Π°ΡΠ° Π½Π° ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΈΡΠ΅ ΡΡΠ½Π³Π°Π»Π½ΠΈ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΎ Aspergillus, ΠΈ Π·Π°Π΅Π΄Π½ΠΎ ΡΠΎ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈΡΠ΅ ΠΎΠ΄ ΠΊΠΎΠ½Π²Π΅Π½ΡΠΈΠΎΠ½Π°Π»Π½ΠΈΡΠ΅ ΠΌΠΈΠΊΠΎΠ»ΠΎΡΠΊΠΈ ΠΈΡΠΏΠΈΡΡΠ²Π°ΡΠ°, ΠΏΠΎΠΌΠ°Π³Π°Π°Ρ Π²ΠΎ Π½Π°Π²ΡΠ΅ΠΌΠ΅Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π° Π½Π° Π°Π½ΡΠΈΡΡΠ½Π³Π°Π»Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡΠ°, ΠΈ ΠΏΠΎΡΡΠΈΠ³Π½ΡΠ²Π°ΡΠ΅ ΠΏΠΎΠ²ΠΎΠ»Π΅Π½ ΠΊΠ»ΠΈΠ½ΠΈΡΠΊΠΈ ΠΈΡΡ
ΠΎΠ΄.
ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡΠ° Π½Π° ΠΌΠΈΠΊΡΠΎΡΠ»ΠΎΡΠ°ΡΠ° ΠΎΠ΄ ΡΡΠ½Π°ΡΠ° ΠΏΡΠ°Π·Π½ΠΈΠ½Π° Π½Π° Π΅Π³Π·ΠΎΡΠΈΡΠ½ΠΈ Π·ΠΌΠΈΠΈ ΡΡΠ²Π°Π½ΠΈ ΠΊΠ°ΠΊΠΎ Π΄ΠΎΠΌΠ°ΡΠ½ΠΈ ΠΌΠΈΠ»Π΅Π½ΠΈΡΠΈ
In recent years, snakes have become suitable pets for people with little spare time. By buying these animals people ignore the fact that they carry many microorganisms that are pathogenic for humans. The idea of ββthis study was to identify the microorganisms from the oral cavity of exotic snakes kept as pets in the Republic of North Macedonia, which can help in the treatment of bite infections if they occur. The study comprised 30 snakes of 9 species, from 3 families of non-venomous snakes: Pythonidae, Boidae and Colubridae. Snakes are part of the 5 largest collections of exotic snakes in the Republic of North Macedonia. Only one swab from the oral cavity was taken from each snake. The brushes were cultured and microscopically analyzed at the Institute of Microbiology and Parasitology at the Faculty of Medicine in Skopje. From 59 isolated microorganisms from the oral cavity of 30 exotic snakes, 37.3% were Gram-positive bacteria, 61.01% were Gram-negative bacteria and 1.69% were fungi. Of the total number of microorganisms, Pseudomonas aeruginosa was predominant with 27.11%, Providencia rettgeri / Proteus vulgaris with 18.64% and KONS / Micrococcus luteus with 16.94%. Pseudomonas aeruginosa was present in all three snake families, with 62.5% of the snake in the fam. Pythonidae; 50% in the fam. Boidae and 50% in the fam. Colubridae. The isolate Providencia rettgeri / Proteus vulgaris was most frequently found in the fam. Colubridae with 71.43%, followed by fam. Pythonidae with 12.5%, but was not isolated in any specimen of the fam. Boidae. The microbiome of the non-venomous snakes is composed of Gram-positive bacteria in healthy snakes, but also in snakes kept in inadequate hygienic conditions. Gram-negative bacteria were predominant, of which the most significant was the presence of multiple drug resistance Pseudomonas aeruginosa. Snakes as pets require proper knowledge of terms and conditions.ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ²Π΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π·ΠΌΠΈΠΈΡΠ΅ ΡΡΠ°Π½Π°Π° Π°ΠΊΡΡΠ΅Π»Π½ΠΈ Π΄ΠΎΠΌΠ°ΡΠ½ΠΈ ΠΌΠΈΠ»Π΅Π½ΠΈΡΠΈ Π·Π° Π»ΡΡΠ΅ΡΠΎ ΠΊΠΎΠΈ ΠΈΠΌΠ°Π°Ρ ΠΌΠ°Π»ΠΊΡ ΡΠ»ΠΎΠ±ΠΎΠ΄Π½ΠΎ Π²ΡΠ΅ΠΌΠ΅. ΠΠΎ, ΠΏΡΠΈ ΠΊΡΠΏΡΠ²Π°ΡΠ΅ Π½Π° ΠΎΠ²ΠΈΠ΅ ΠΆΠΈΠ²ΠΎΡΠ½ΠΈ ΡΠ΅ Π·Π°Π½Π΅ΠΌΠ°ΡΡΠ²Π° ΡΠ°ΠΊΡΠΎΡ Π΄Π΅ΠΊΠ° ΡΠ΅ Π½ΠΎΡΠΈΡΠ΅Π»ΠΈ Π½Π° Π³ΠΎΠ»Π΅ΠΌ Π±ΡΠΎΡ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈ ΠΊΠΎΠΈ ΡΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½ΠΈ Π·Π° ΡΠΎΠ²Π΅ΠΊΠΎΡ. ΠΠ΄Π΅ΡΠ°ΡΠ° Π½Π° ΠΎΠ²ΠΎΡ ΡΡΡΠ΄ Π±Π΅ΡΠ΅ Π΄Π° ΡΠ΅ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΡΠ²Π°Π°Ρ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈΡΠ΅ Π²ΠΎ ΡΡΠ½Π°ΡΠ° ΠΏΡΠ°Π·Π½ΠΈΠ½Π° ΠΊΠ°Ρ Π΅Π³Π·ΠΎΡΠΈΡΠ½ΠΈ Π·ΠΌΠΈΠΈ ΠΊΠΎΠΈ ΡΠ΅ ΡΡΠ²Π°Π°Ρ ΠΊΠ°ΠΊΠΎ Π΄ΠΎΠΌΠ°ΡΠ½ΠΈ ΠΌΠΈΠ»Π΅Π½ΠΈΡΠΈ Π²ΠΎ Π Π΅ΠΏΡΠ±Π»ΠΈΠΊΠ° Π‘Π΅Π²Π΅ΡΠ½Π° ΠΠ°ΠΊΠ΅Π΄ΠΎΠ½ΠΈΡΠ°, ΡΠΎ ΡΡΠΎ Π±ΠΈ ΠΏΠΎΠΌΠΎΠ³Π½Π°Π»Π΅ Π²ΠΎ ΡΡΠ΅ΡΠΌΠ°Π½ΠΎΡ Π½Π° ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΠΏΡΠΈ ΠΊΠ°ΡΠ½ΡΠ²Π°ΡΠ΅. ΠΠΎ ΡΡΡΠ΄ΠΈΡΠ°ΡΠ° ΡΠ΅ ΠΎΠΏΡΠ°ΡΠ΅Π½ΠΈ 30 Π·ΠΌΠΈΠΈ ΠΎΠ΄ 9 Π²ΠΈΠ΄ΠΎΠ²ΠΈ, ΠΎΠ΄ 3 ΡΠ°ΠΌΠΈΠ»ΠΈΠΈ Π½Π° Π½Π΅ΠΎΡΡΠΎΠ²Π½ΠΈ Π·ΠΌΠΈΠΈ: Pythonidae, Boidae ΠΈ Colubridae. ΠΠΌΠΈΠΈΡΠ΅ ΡΠ΅ Π΄Π΅Π» ΠΎΠ΄ 5 Π½Π°ΡΠ³ΠΎΠ»Π΅ΠΌΠΈ ΠΊΠΎΠ»Π΅ΠΊΡΠΈΠΈ Π½Π° Π΅Π³Π·ΠΎΡΠΈΡΠ½ΠΈ Π·ΠΌΠΈΠΈ Π²ΠΎ Π Π΅ΠΏΡΠ±Π»ΠΈΠΊΠ° Π‘Π΅Π²Π΅ΡΠ½Π° ΠΠ°ΠΊΠ΅Π΄ΠΎΠ½ΠΈΡΠ°. ΠΠ΄ ΡΠ΅ΠΊΠΎΡΠ° Π·ΠΌΠΈΡΠ° Π±Π΅ΡΠ΅ Π·Π΅ΠΌΠ΅Π½ ΡΠ°ΠΌΠΎ ΠΏΠΎ Π΅Π΄Π΅Π½ Π±ΡΠΈΡ ΠΎΠ΄ ΡΡΠ½Π°ΡΠ° ΡΡΠΏΠ»ΠΈΠ½Π°. ΠΡΠΈΡΠ΅Π²ΠΈΡΠ΅ Π±Π΅Π° ΠΊΡΠ»ΡΡΡΠ΅Π»Π½ΠΎ ΠΈ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΡΠΊΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΡΠ²Π°Π½ΠΈ Π½Π° ΠΠ½ΡΡΠΈΡΡΡΠΎΡ Π·Π° ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ° ΠΈ ΠΏΠ°ΡΠ°Π·ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡΠ° Π½Π° ΠΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠΎΡ ΡΠ°ΠΊΡΠ»ΡΠ΅Ρ ΠΏΡΠΈ Π£ΠΠΠ Π²ΠΎ Π‘ΠΊΠΎΠΏΡΠ΅. ΠΠ΄ Π²ΠΊΡΠΏΠ½ΠΎ 59 ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½ΠΈ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΈ ΠΎΠ΄ ΡΡΠ½Π°ΡΠ° ΠΏΡΠ°Π·Π½ΠΈΠ½Π° Π½Π° 30 Π΅Π³Π·ΠΎΡΠΈΡΠ½ΠΈ Π·ΠΌΠΈΠΈ, 37,3% Π±Π΅Π° ΠΡΠ°ΠΌ-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, 61,01% Π±Π΅Π° ΠΡΠ°ΠΌ-Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΈ 1,69% Π±Π΅Π° Π³Π°Π±ΠΈ. ΠΠΎΠΌΠΈΠ½Π°Π½ΡΠ½ΠΈ Π±Π΅Π° Π±Π°ΠΊΡΠ΅ΡΠΈΠΈΡΠ΅ Pseudomonas aeruginosa ΡΠΎ 27,11%, Providencia rettgeri / Proteus vulgaris ΡΠΎ 18,64% ΠΈ KONS / Micrococcus luteus ΡΠΎ 16,94%. Pseudomonas aeruginosa Π±Π΅ΡΠ΅ Π·Π°ΡΡΠ°ΠΏΠ΅Π½ ΠΊΠ°Ρ ΡΠΈΡΠ΅ ΡΡΠΈ ΡΠ°ΠΌΠΈΠ»ΠΈΠΈ Π½Π° Π·ΠΌΠΈΠΈ, ΠΈ ΡΠΎΠ° ΡΠΎ 62,5% ΠΊΠ°Ρ ΡΠ°ΠΌ. Pythonidae, 50% ΠΊΠ°Ρ ΡΠ°ΠΌ. Boidae ΠΈ 50% ΠΊΠ°Ρ ΡΠ°ΠΌ. Colubridae. ΠΠ·ΠΎΠ»Π°ΡΠΎΡ Providencia rettgeri /Proteus vulgaris Π±Π΅ΡΠ΅ Π½Π°ΡΠΌΠ½ΠΎΠ³Ρ ΠΏΡΠΈΡΡΡΠ΅Π½ ΠΊΠ°Ρ ΡΠ°ΠΌ. Colubridea ΡΠΎ 71,43, ΠΏΠΎΡΠΎΠ° ΠΊΠ°Ρ ΡΠ°ΠΌ. Pythonidae 12,5%, Π½ΠΎ Π²ΠΎΠΎΠΏΡΡΠΎ Π½Π΅ Π±Π΅ΡΠ΅ ΠΈΠ·ΠΎΠ»ΠΈΡΠ°Π½ ΠΊΠ°Ρ Π½ΠΈΡΡ Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΊ ΠΎΠ΄ ΡΠ°ΠΌ. Boidae. ΠΠΈΠΊΡΠΎΠ±ΠΈΠΎΠΌΠΎΡ Π½Π° Π½Π΅ΠΎΡΡΠΎΠ²Π½ΠΈΡΠ΅ Π·ΠΌΠΈΠΈ Π±Π΅ΡΠ΅ ΡΠΎΡΡΠ°Π²Π΅Π½ ΠΎΠ΄ ΠΡΠ°ΠΌ-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΊΠ°Ρ Π·Π΄ΡΠ°Π²ΠΈ Π·ΠΌΠΈΠΈ. ΠΠ°Ρ Π·ΠΌΠΈΠΈΡΠ΅ ΡΡΠ²Π°Π½ΠΈ Π²ΠΎ Π½Π΅ΡΠΎΠΎΠ΄Π²Π΅ΡΠ½ΠΈ Ρ
ΠΈΠ³ΠΈΠ΅Π½ΡΠΊΠΈ ΡΡΠ»ΠΎΠ²ΠΈ ΠΏΡΠ΅Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠ°Π° ΠΡΠ°ΠΌ-Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈΡΠ΅ Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ, ΠΎΠ΄ ΠΊΠΎΠΈ Π½Π°ΡΠ·Π½Π°ΡΠ°ΡΠ½ΠΎ Π±Π΅ΡΠ΅ ΠΏΡΠΈΡΡΡΡΠ²ΠΎΡΠΎ Π½Π° Pseudomonas aeruginosa, ΠΊΠΎΡ ΡΠ΅ΡΡΠΎ Π΅ ΠΎΡΠΏΠΎΡΠ΅Π½ Π½Π° ΠΏΠΎΠ²Π΅ΡΠ΅ Π³ΡΡΠΏΠΈ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΈ ΡΡΠ΅Π΄ΡΡΠ²Π°. ΠΠΌΠΈΠΈΡΠ΅ ΠΊΠ°ΠΊΠΎ Π΄ΠΎΠΌΠ°ΡΠ½ΠΈ ΠΌΠΈΠ»Π΅Π½ΠΈΡΠΈ Π±Π°ΡΠ°Π°Ρ ΡΠΎΠΎΠ΄Π²Π΅ΡΠ½ΠΎ ΠΏΠΎΠ·Π½Π°Π²Π°ΡΠ΅ Π½Π° ΡΡΠ»ΠΎΠ²ΠΈΡΠ΅ Π·Π° ΡΡΠ²Π°ΡΠ΅ ΠΈ Π½Π΅Π³Π°
Variation in HRM profile of ITS regions.
<p>The negative first derivative (-dF/dt) of the normalized melt curve of rDNA ITS1, ITS2 and full-length ITS region of <i>C</i>. <i>albicans</i> and <i>P</i>. <i>kudriavzevii</i> are shown.</p
Euclidean distance is a poor metric for comparing melt curves.
<p>(A) Melt profiles of eight samples of <i>C</i>. <i>albicans</i> strain SC5314 illustrating the variation inherent in melt curve acquisition. (B) Dendrogram of nearest neighbor clustering results using Euclidean distances. The four melt curves obtained for each strain in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173320#pone.0173320.t001" target="_blank">Table 1</a> were averaged and the Euclidean distances between the averaged curves was clustered.</p
The effect of DTW step patterns and window sizes on melt curve clustering.
<p>(A) DTW distances between all 204 melt curves obtained for the 51 strains in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173320#pone.0173320.t001" target="_blank">Table 1</a> were calculated using each of the possible Rabiner and Juang step patterns and slope combinations (21). Distances were calculated with no window constraint or with the window size varied from 1 to 20. Dots indicate successful nearest-neighbor clustering of all 204 melt curves into 18 species-specific groups. Green dots indicate step pattern and slope combinations successful even in the absence of window constraints. Red dots represent those distances for which clustering was successful only with the indicated window size. (B) The minimum silhouette width (34) as a function of window size for step pattern Type 6b.</p
Melt profiles differ between <i>C</i>. <i>dubliniensis</i> subtypes.
<p>The melt profile of a <i>C</i>. <i>dubliniensis</i> Genotype 1 strain, clinical isolate CI_39o, and the two database standards, both of Genotype 2, is shown.</p