12 research outputs found

    Effects of Fluoride on Submandibular Glands of Mice: Changes in Oxidative Biochemistry, Proteomic Profile, and Genotoxicity

    Get PDF
    Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acid–reactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects

    Chronic Exposure to Sodium Fluoride Triggers Oxidative Biochemistry Misbalance in Mice: Effects on Peripheral Blood Circulation

    No full text
    The excessive fluoride (F) exposure is associated with damage to cellular processes of different tissue types, due to changes in enzymatic metabolism and breakdown of redox balance. However, few studies evaluate doses of F compatible with human consumption. Thus, this study evaluated the effects of chronic exposure to sodium fluoride (NaF) on peripheral blood of mice from the evaluation of biochemical parameters. The animals were divided into three groups (n=10) and received three concentrations of NaF in the drinking water for 60 days: 0 mg/L F, 10 mg/L F, and 50 mg/L F. The blood was then collected for trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), concentrations of nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH). The results showed that doses of 10 mg/L F and 50 mg/L F were able to increase TBARS concentration and decrease NO levels and CAT activity in the blood, but there was no statistical difference for SOD levels. The 50 mg/L F group showed an increase in TEAC levels and a decrease in the GSH content when compared to the control group. In this way, oxidative changes in blood from chronic exposure to F, especially at the highest dose, indicate that F may be a toxic agent and, therefore, the long-term exposure to excessive doses should be avoided

    The certainty of evidence.

    No full text
    Numerous pre-clinical and observational studies have explored the potential effects of fluoride (F) at varying concentrations on diverse systems and organs. While some have assessed the endocrinological conditions of children and adults, a consensus regarding the interaction between F and the thyroid remains elusive. This systematic review aimed to gather primary evidence on the association between F and changes in the thyroid at optimal and high levels in water supply as stipulated by the World Health Organization. A search strategy, incorporating terms pertinent to the studies, was employed across PubMed, Scopus, Web of Science, Lilacs, and Google Scholar. Following the review of studies, data were extracted and analyzed using the Grading of Recommendations, Assessment, Development, and Evaluations to assess the quality of the evidence. Our results yielded 3,568 studies, of which seven met the inclusion criteria for this review. Five of the seven studies identified an association between high F exposure and thyroid function. In the analysis of methodological quality, every study was found to have major or minor methodological issues and significant risk of bias. The overall confidence in the evidence was deemed low for all outcomes in the seven studies. The evidence compiled in this review suggests a potential association between chronic high levels of F exposure and thyroid damage. Nonetheless, further studies with robust design and high methodological quality are required to provide evidence for policy makers and health care practitioners.</div

    Data extraction from the elected studies.

    No full text
    Numerous pre-clinical and observational studies have explored the potential effects of fluoride (F) at varying concentrations on diverse systems and organs. While some have assessed the endocrinological conditions of children and adults, a consensus regarding the interaction between F and the thyroid remains elusive. This systematic review aimed to gather primary evidence on the association between F and changes in the thyroid at optimal and high levels in water supply as stipulated by the World Health Organization. A search strategy, incorporating terms pertinent to the studies, was employed across PubMed, Scopus, Web of Science, Lilacs, and Google Scholar. Following the review of studies, data were extracted and analyzed using the Grading of Recommendations, Assessment, Development, and Evaluations to assess the quality of the evidence. Our results yielded 3,568 studies, of which seven met the inclusion criteria for this review. Five of the seven studies identified an association between high F exposure and thyroid function. In the analysis of methodological quality, every study was found to have major or minor methodological issues and significant risk of bias. The overall confidence in the evidence was deemed low for all outcomes in the seven studies. The evidence compiled in this review suggests a potential association between chronic high levels of F exposure and thyroid damage. Nonetheless, further studies with robust design and high methodological quality are required to provide evidence for policy makers and health care practitioners.</div

    PRISMA 2020 checklist.

    No full text
    Numerous pre-clinical and observational studies have explored the potential effects of fluoride (F) at varying concentrations on diverse systems and organs. While some have assessed the endocrinological conditions of children and adults, a consensus regarding the interaction between F and the thyroid remains elusive. This systematic review aimed to gather primary evidence on the association between F and changes in the thyroid at optimal and high levels in water supply as stipulated by the World Health Organization. A search strategy, incorporating terms pertinent to the studies, was employed across PubMed, Scopus, Web of Science, Lilacs, and Google Scholar. Following the review of studies, data were extracted and analyzed using the Grading of Recommendations, Assessment, Development, and Evaluations to assess the quality of the evidence. Our results yielded 3,568 studies, of which seven met the inclusion criteria for this review. Five of the seven studies identified an association between high F exposure and thyroid function. In the analysis of methodological quality, every study was found to have major or minor methodological issues and significant risk of bias. The overall confidence in the evidence was deemed low for all outcomes in the seven studies. The evidence compiled in this review suggests a potential association between chronic high levels of F exposure and thyroid damage. Nonetheless, further studies with robust design and high methodological quality are required to provide evidence for policy makers and health care practitioners.</div

    Long-Term Lead Exposure Since Adolescence Causes Proteomic and Morphological Alterations in the Cerebellum Associated with Motor Deficits in Adult Rats

    No full text
    Lead (Pb) is an environmental contaminant that presents a high risk for human health. We aimed to investigate the possible alterations triggered by the exposure to Pb acetate for a long period in motor performance and the possible relationship with biochemical, proteomic and morphological alterations in the cerebellum of rats. Male Wistar rats were exposed for 55 days, at 50 mg/Kg of Pb acetate, and the control animals received distilled water. Open field (OF) and rotarod tests; biochemistry parameters (MDA and nitrite); staining/immunostaining of Purkinje cells (PC), mature neurons (MN), myelin sheath (MS) and synaptic vesicles (SYN) and proteomic profile were analyzed. Pb deposition on the cerebellum area and this study drove to exploratory and locomotion deficits and a decrease in the number of PC, MN, SYN and MS staining/immunostaining. The levels of MDA and nitrite remained unchanged. The proteomic profile showed alterations in proteins responsible for neurotransmitters release, as well as receptor function and second messengers signaling, and also proteins involved in the process of apoptosis. Thus, we conclude that the long-term exposure to low Pb dose promoted locomotion and histological tracings, associated with alterations in the process of cell signaling, as well as death by apoptosis
    corecore