15 research outputs found

    The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses

    Get PDF
    Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55 000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52–61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38–D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov

    Tree pruner: An efficient tool for selecting data from a biased genetic database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large databases of genetic data are often biased in their representation. Thus, selection of genetic data with desired properties, such as evolutionary representation or shared genotypes, is problematic. Selection on the basis of epidemiological variables may not achieve the desired properties. Available automated approaches to the selection of influenza genetic data make a tradeoff between speed and simplicity on the one hand and control over quality and contents of the dataset on the other hand. A poorly chosen dataset may be detrimental to subsequent analyses.</p> <p>Results</p> <p>We developed a tool, <it>Tree Pruner</it>, for obtaining a dataset with desired evolutionary properties from a large, biased genetic database. Tree Pruner provides the user with an interactive phylogenetic tree as a means of editing the initial dataset from which the tree was inferred. The tree visualization changes dynamically, using colors and shading, reflecting Tree Pruner actions. At the end of a Tree Pruner session, the editing actions are implemented in the dataset.</p> <p>Currently, Tree Pruner is implemented on the Influenza Research Database (IRD). The data management capabilities of the IRD allow the user to store a pruned dataset for additional pruning or for subsequent analysis. Tree Pruner can be easily adapted for use with other organisms.</p> <p>Conclusions</p> <p>Tree Pruner is an efficient, manual tool for selecting a high-quality dataset with desired evolutionary properties from a biased database of genetic sequences. It offers an important alternative to automated approaches to the same goal, by providing the user with a dynamic, visual guide to the ongoing selection process and ultimate control over the contents (and therefore quality) of the dataset.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Rating on life valuation scale

    No full text

    Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis

    No full text
    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms
    corecore