343 research outputs found

    Calcareous Bio-Concretions in the Northern Adriatic Sea: Habitat Types, Environmental Factors that Influence Habitat Distributions, and Predictive Modeling

    Get PDF
    Habitat classifications provide guidelines for mapping and comparing marine resources across geographic regions. Calcareous bio-concretions and their associated biota have not been exhaustively categorized. Furthermore, for management and conservation purposes, species and habitat mapping is critical. Recently, several developments have occurred in the field of predictive habitat modeling, and multiple methods are available. In this study, we defined the habitats constituting northern Adriatic biogenic reefs and created a predictive habitat distribution model. We used an updated dataset of the epibenthic assemblages to define the habitats, which we verified using the fuzzy k-means (FKM) clustering method. Redundancy analysis was employed to model the relationships between the environmental descriptors and the FKM membership grades. Predictive modelling was carried out to map habitats across the basin. Habitat A (opportunistic macroalgae, encrusting Porifera, bioeroders) characterizes reefs closest to the coastline, which are affected by coastal currents and river inputs. Habitat B is distinguished by massive Porifera, erect Tunicata, and noncalcareous encrusting algae (Peyssonnelia spp.). Habitat C (non-articulated coralline, Polycitor adriaticus) is predicted in deeper areas. The onshore-offshore gradient explains the variability of the assemblages because of the influence of coastal freshwater, which is the main driver of nutrient dynamics. This model supports the interpretation of Habitat A and C as the extremes of a gradient that characterizes the epibenthic assemblages, while Habitat B demonstrates intermediate characteristics. Areas of transition are a natural feature of the marine environment and may include a mixture of habitats and species. The habitats proposed are easy to identify in the field, are related to different environmental features, and may be suitable for application in studies focused on other geographic areas. The habitat model outputs provide insight into the environmental drivers that control the distribution of the habitat and can be used to guide future research efforts and cost-effective management and conservation plans

    Experimental and Numerical Investigation of Hot Extruded Inconel 718

    Get PDF
    Inconel 718 is a widely used superalloy, due to its unique corrosion resistance and mechanical strength properties at very high temperatures. Hot metal extrusion is the most widely used forming technique, if the manufacturing of slender components is required. As the current scientific literature does not comprehensively cover the fundamental aspects related to the process–structure relationships, in the present work, a combined numerical and experimental approach is employed. A finite element (FE) model was established to answer three key questions: (1) predicting the required extrusion force at different extrusion speeds; (2) evaluating the influence of the main processing parameters on the formation of surface cracks using the normalized Cockcroft Latham’s (nCL) damage criterion; and (3) quantitatively assessing the amount of recrystallized microstructure through Avrami’s equation. For the sake of modeling validation, several experimental investigations were carried out under different processing conditions. Particularly, it was found that the higher the initial temperature of the billet, the lower the extrusion force, although a trade-off must be sought to avoid the formation of surface cracks occurring at excessive temperatures, while limiting the required extrusion payload. The extrusion speed also plays a relevant role. Similarly to the role of the temperature, an optimal extrusion speed value must be identified to minimize the possibility of surface crack formation (high speeds) and to minimize the melting of intergranular niobium carbides (low speeds)

    Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits

    Get PDF
    In order to expand with validated scientific data the limited knowledge regarding the potential application of insects as innovative feed ingredients for poultry, the present study tested a partial substitution of soya bean meal and soya bean oil with defatted black soldier fly (Hermetia illucens) larvae meal (H) in the diet for growing broiler quails (Coturnix coturnix japonica) on growth performance, mortality, nutrients apparent digestibility, microbiological composition of excreta, feed choice, carcass and meat traits. With this purpose, a total of 450 10-day-old birds were allocated to 15 cages (30 birds/cage) and received three dietary treatments: a Control diet (C) and two diets (H1 and H2) corresponding to 10% and 15% H inclusion levels, respectively (H substituted 28.4% soya bean oil and 16.1% soya bean meal for H1, and 100% soya bean oil and 24.8% soya bean meal for H2, respectively). At 28 days of age, quails were slaughtered, carcasses were weighed, breast muscles were then excised from 50 quails/treatment, weighed, and ultimate pH (pHu) and L*, a*, b* colour values were measured. Breast muscles were then cooked to assess cooking loss and meat toughness. For the digestibility trial, a total of 15 28-day-old quails were assigned to the three feeding groups. The excreta samples were subjected to chemical and microbiological analysis. The same 15 quails were then simultaneously provided with C and H2 diets for a 10-day feed choice trial. Productive performance, mortality and carcass traits were in line with commercial standards and similar in all experimental groups. With the exception of ether extract digestibility, which was lower in H1 group compared with C and H2 (P=0.0001), apparent digestibility of dry matter, CP, starch and energy did not differ among treatments. Microbial composition of excreta was also comparable among the three groups. Feed choice trial showed that quails did not express a preference toward C or H2 diets. Breast meat weight and yield did not differ among C, H1 and H2 quails. Differently, the inclusion of H meal reduced meat pHu compared with C. In conclusion, this study demonstrated that H. illucens larvae meal can partially replace conventional soya bean meal and soya bean oil in the diet for growing broiler quails, thus confirming to be a promising insect protein source for the feed industry. Further research to assess the impact of H meal on intestinal morphology as well as on meat quality and sensory profile would be of utmost importance

    Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers

    Get PDF
    Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN-/-) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN-/- TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Downregulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors

    Estabelecimento de normas DRIS para o cupuaçueiro na região amazônica.

    Get PDF
    A avaliação do estado nutricional de um pomar ou lavoura depende da definição de valores de referência que sejam adequados para refletir as condições de crescimento das plantas. Neste sentido, o objetivo deste trabalho foi determinar normas DRIS para cupuaçueiro cultivado na Amazônia, testando em populações com diferentes idades. Amostras foliares de cupuaçu foram coletadas de pomares comerciais, cuja idade das plantas variou de 5 a 18 anos, cultivadas sob monocultivo ou sistemas agroflorestais (SAF's), obtendo-se para cada relação nutricional entre os nutrientes N, P, K, Ca, Mg, Zn, Fe, Mn e Cu as normas DRIS, as quais foram obtidas para o conjunto da população monitorada e para subpopulações específicas. Os diferentes grupos de normas não diferem entre si, possibilitando a obtenção de normas DRIS que possam representar um grande número de condições de produção

    SOCS2 controls proliferation and stemness of hematopoietic cells under stress conditions and its deregulation marks unfavorable acute leukemias

    Get PDF
    Hematopoietic stem cells (HSC) promptly adapt hematopoiesis to stress conditions, such as infection and cancer, replenishing bone marrow-derived circulating populations, while preserving the stem cell reservoir. SOCS2, a feedback inhibitor of JAK-STAT pathways, is expressed in most primitive HSC and is upregulated in response to STAT5-inducing cytokines. We demonstrate that Socs2 deficiency unleashes HSC proliferation in vitro, sustaining STAT5 phosphorylation in response to IL3, thrombopoietin, and GM-CSF. In vivo, SOCS2 deficiency leads to unrestricted myelopoietic response to 5-fluorouracil (5-FU) and, in turn, induces exhaustion of long-term HSC function along serial bone marrow transplantations. The emerging role of SOCS2 in HSC under stress conditions prompted the investigation of malignant hematopoiesis. High levels of SOCS2 characterize unfavorable subsets of acute myeloid and lymphoblastic leukemias, such as those with MLL and BCR/ABL abnormalities, and correlate with the enrichment of genes belonging to hematopoietic and leukemic stemness signatures. In this setting, SOCS2 and its correlated genes are part of regulatory networks fronted by IKZF1/Ikaros and MEF2C, two transcriptional regulators involved in normal and leukemic hematopoiesis that have never been linked to SOCS2. Accordingly, a comparison of murine wt and Socs2-/- HSC gene expression in response to 5-FU revealed a significant overlap with the molecular programs that correlate with SOCS2 expression in leukemias, particularly with the oncogenic pathways and with the IKZF1/Ikaros and MEF2C-predicted targets. Lentiviral gene transduction of murine hematopoietic precursors with Mef2c, but not with Ikzf1, induces Socs2 upregulation, unveiling a direct control exerted by Mef2c over Socs2 expression

    {\AA}ngstr\"om-resolved Interfacial Structure in Organic-Inorganic Junctions

    Get PDF
    Charge transport processes at interfaces which are governed by complex interfacial electronic structure play a crucial role in catalytic reactions, energy storage, photovoltaics, and many biological processes. Here, the first soft X-ray second harmonic generation (SXR-SHG) interfacial spectrum of a buried interface (boron/Parylene-N) is reported. SXR-SHG shows distinct spectral features that are not observed in X-ray absorption spectra, demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations indicates a boron-organic separation distance of 1.9 {\AA}, wherein changes as small as 0.1 {\AA} result in easily detectable SXR-SHG spectral shifts (ca. 100s of meV). As SXR-SHG is inherently ultrafast and sensitive to individual atomic layers, it creates the possibility to study a variety of interfacial processes, e.g. catalysis, with ultrafast time resolution and bond specificity.Comment: 19 page

    Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion.

    Get PDF
    In myeloid malignancies, the neoplastic clone outgrows normal hematopoietic cells toward BM failure. This event is also sustained by detrimental stromal changes, such as BM fibrosis and osteosclerosis, whose occurrence is harbinger of a dismal prognosis. We show that the matricellular protein SPARC contributes to the BM stromal response to myeloproliferation. The degree of SPARC expression in BM stromal elements, including CD146(+) mesenchymal stromal cells, correlates with the degree of stromal changes, and the severity of BM failure characterizing the prototypical myeloproliferative neoplasm primary myelofibrosis. Using Sparc(-/-) mice and BM chimeras, we demonstrate that SPARC contributes to the development of significant stromal fibrosis in a model of thrombopoietin-induced myelofibrosis. We found that SPARC deficiency in the radioresistant BM stroma compartment impairs myelofibrosis but, at the same time, associates with an enhanced reactive myeloproliferative response to thrombopoietin. The link betwen SPARC stromal deficiency and enhanced myeloid cell expansion under a myeloproliferative spur is also supported by the myeloproliferative phenotype resulting from the transplantation of defective Apc(min) mutant hematopoietic cells into Sparc(-/-) but not WT recipient BM stroma. Our results highlight a complex influence of SPARC over the stromal and hematopoietic BM response in myeloproliferative conditions
    corecore