6 research outputs found
The Impact of the Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism on Severe Hypoglycemia in Type 2 Diabetes
The insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme gene (ACE) is associated with altered serum ACE activity. Raised ACE levels and the ACE DD genotype are associated with a 3.2 to 6.8-fold increased risk of severe hypoglycemia in type 1 diabetes. This relationship has not been assessed in type 2 diabetes. We aimed to test for association of the ACE I/D polymorphism with severe hypoglycemia in type 2 diabetes. Patients with type 2 diabetes (n = 308), treated with insulin (n = 124) or sulphonylureas (n = 184), were classified according to whether or not they had previously experienced severe hypoglycemia. Samples of DNA were genotyped for the ACE I/D polymorphism using two alternative polymerase chain reactions to prevent mistyping due to preferential amplification of the D allele. Overall, 12% of patients had previously experienced one or more episodes of severe hypoglycemia. This proportion did not differ between genotype groups (odds ratio (95% confidence limits) for carriers of D allele relative to II homozygotes: 0.79 (0.35-1.78)). This study found no evidence for association of the ACE I/D polymorphism with severe hypoglycemia frequency in patients with type 2 diabetes. However, we cannot rule out a smaller effect (odds ratio ≤ 1.78). Our results suggest that any effect of ACE genotype on severe hypoglycemia risk in type 2 patients is likely to be smaller than that seen in type 1 diabetes. We recommend future larger-scale studies
Sequencing of Candidate Genes Selected by Beta Cell Experts in Monogenic Diabetes of Unknown Aetiology
Context Approximately 39% of cases with permanent neonatal diabetes (PNDM) and about 11% with maturity onset diabetes of the young (MODY) have an unknown genetic aetiology. Many of the known genes causing MODY and PNDM were identified as being critical for beta cell function before their identification as a cause of monogenic diabetes. Objective We used nominations from the EU beta cell consortium EURODIA project partners to guide gene candidacy. Subjects Seventeen cases with permanent neonatal diabetes and 8 cases with maturity onset diabetes of the young. Main outcome measures The beta cell experts within the EURODIA consortium were asked to nominate 3 "gold", 3 "silver" and 4 "bronze" genes based on biological or genetic grounds. We sequenced twelve candidate genes from the list based on evidence for candidacy. Results Sequencing ISL1, LMX1A, MAFA, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, SOX2, SREBF1, SYT9 and UCP2 did not identify any pathogenic mutations. Conclusion Further work is needed to identify novel causes of permanent neonatal diabetes and maturity onset diabetes of the young utilising genetic approaches as well as further candidate genes.Image: Peninsula Medical School logo. Exeter, United Kingdom