25 research outputs found

    SĂŒdamerakkude sĂŒnnijĂ€rgse arengu bioenergeetilised aspektid: struktuuri ja funktsiooni vaheliste seoste vĂ€ljakujunemine

    Get PDF
    Taust ja eesmĂ€rk. TĂ€iskasvanud sĂŒdamerakkude bioenergeetikas on valdavaks ATP genereerimisemehhanismiks mitokondriaalne oksĂŒdatiivne fosforĂŒĂŒlimine, mis katab tavatingimustel ĂŒle 90% sĂŒdame energeetilisest vajadusest. Mitokondrid paiknevad kardiomĂŒotsĂŒĂŒtides korrapĂ€raselt mĂŒofibrillide vahel, asetudes kohakuti libisevate filamentide kontaktalaga (sarkomeeri anisotroopne (A) vööt). AktomĂŒosiinisĂŒsteem, mitokondrid, sarkoplasmaatiline vĂ”rgustik ja nendega seotud tsĂŒtoskeleti valgud moodustavad rakus ĂŒhtse struktuurse ja funktsionaalse terviku, nn energeetilise ĂŒksuse (EÜ), mis reguleerib efektiivselt energia tootmist ja fosforĂŒĂŒlrĂŒhma ĂŒlekannet. Vahetult pĂ€rast sĂŒndi on mitokondrite paigutus ebakorrapĂ€rane, tĂ€iskasvanud kardiomĂŒotsĂŒĂŒdiga vĂ”rreldes on oluliselt erinev ka sĂŒdamerakkude metabolism ning energiaĂŒlekande regulatsioon. Töö eesmĂ€rgiks oli uurida sĂŒdame mitokondriaalse hingamise regulatsiooni mehhanismide vĂ€ljakujunemist sĂŒdame sĂŒnnijargses arengus ning selle seotust mitokondrite ja tubuliini isovormide rakusisese paigutusega. Töö tulemused vĂ”imaldavad selgitada sĂŒdamerakkude teatud patoloogiliste seisundite etioloogiat. Metoodika. KardiomĂŒotsĂŒĂŒdid isoleeriti, perfuseerides katseloomade (Wistari liini rotid) sĂŒdant kollagenaas A lahusega. Skineeritud kiudude eraldamiseks kasutati meetodit, mille kĂ€igus lihaskiud eraldatakse Ă”rnalt pintsettidega ja töödeldakse seejĂ€rel saponiiniga. Permeabiliseeritud kardiomĂŒotsĂŒĂŒtide ja skineeritud kiudude hapnikutarbimine registreeriti suure lahutusvĂ”imega oksĂŒgraafil. Preparaatide visualiseerimiseks kasutati konfokaalmikroskoope Zeiss LSM 510 ja Olympus FluoView FV10i-W. Tulemused. Katseloomade sĂŒnni jĂ€rel toimuvad esimese pooleteise kuu jooksul sĂŒdamerakuenergiaĂŒlekande regulatsioonis kiired muutused: mitokondrite paigutus muutub korrapĂ€raseks, toimub tsĂŒtoskeleti funktsionaalselt oluliste komponentide paigutumine mitokondrite lĂ€hedusse ja sellega samal ajal kasvavad oluliselt difusioonitakistused adenosiindifosfaadile (Km(ADP) vÀÀrtus suureneb 75,0 ・} 4,5 ÎŒM 3 pĂ€eva vanuste rottide kardiomĂŒotsĂŒĂŒtides kuni 317 ・} 29,5 ÎŒM vorreldes 84pĂ€evaste katseloomadega) ning kĂ€ivitub kreatiinkinaasi-fosfokreatiini ĂŒlekandevĂ”rgustik mitokondrite ja tsĂŒtosoolsete ATPaaside vahel. JĂ€reldused. Katseloomade sĂŒnnijargse arengu kĂ€igus toimuvad dĂŒnaamilised muutusedkardiomĂŒotsĂŒĂŒtide struktuuris, millega kaasnevad muutused nende funktsioonis. Funktsionaalsete vastasmĂ”jude tekkimine mitokondrite ja tsĂŒtoskeleti komponentide vahel on eelduseks tĂ€iskasvanud sĂŒdamerakule omase energiametabolismi vĂ€ljakujunemiseks. Eesti Arst 2013; 92(7):372–38

    Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling †

    Get PDF
    In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by 18O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 ÎŒmol O2 per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80–85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data

    Matters of the heart in bioenergetics: mitochondrial fusion into continuous reticulum is not needed for maximal respiratory activity.

    No full text
    International audienceMitochondria are dynamic structures for which fusion and fission are well characterized for rapidly dividing cells in culture. Based on these data, it has recently been proposed that high respiratory activity is the result of fusion and formation of mitochondrial reticulum, while fission results in fragmented mitochondria with low respiratory activity. In this work we test the validity of this new hypothesis by analyzing our own experimental data obtained in studies of isolated heart mitochondria, permeabilized cells of cardiac phenotype with different mitochondrial arrangement and dynamics. Additionally, we reviewed published data including electron tomographic investigation of mitochondrial membrane-associated structures in heart cells. Oxygraphic studies show that maximal ADP-dependent respiration rates are equally high both in isolated heart mitochondria and in permeabilized cardiomyocytes. On the contrary, these rates are three times lower in NB HL-1 cells with fused mitochondrial reticulum. Confocal and electron tomographic studies show that there is no mitochondrial reticulum in cardiac cells, known to contain 5,000-10,000 individual, single mitochondria, which are regularly arranged at the level of sarcomeres and are at Z-lines separated from each other by membrane structures, including the T-tubular system in close connection to the sarcoplasmic reticulum. The new structural data in the literature show a principal role for the elaborated T-tubular system in organization of cell metabolism by supplying calcium, oxygen and substrates from the extracellular medium into local domains of the cardiac cells for calcium cycling within Calcium Release Units, associated with respiration and its regulation in Intracellular Energetic Units

    Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart

    Get PDF
    AbstractAdult cardiomyocytes have highly organized intracellular structure and energy metabolism whose formation during postnatal development is still largely unclear. Our previous results together with the data from the literature suggest that cytoskeletal proteins, particularly ÎČII-tubulin, are involved in the formation of complexes between mitochondria and energy consumption sites. The aim of this study was to examine the arrangement of intracellular architecture parallel to the alterations in regulation of mitochondrial respiration in rat cardiomyocytes during postnatal development, from 1day to 6months.Respirometric measurements were performed to study the developmental alterations of mitochondrial function. Changes in the mitochondrial arrangement and cytoarchitecture of ÎČII- and αIV-tubulin were examined by confocal microscopy.Our results show that functional maturation of oxidative phosphorylation in mitochondria is completed much earlier than efficient feedback regulation is established between mitochondria and ATPases via creatine kinase system. These changes are accompanied by significant remodeling of regular intermyofibrillar mitochondrial arrays aligned along the bundles of ÎČII-tubulin. Additionally, we demonstrate that formation of regular arrangement of mitochondria is not sufficient per se to provide adult-like efficiency in metabolic feed-back regulation, but organized tubulin networks and reduction in mitochondrial outer membrane permeability for ADP are necessary as well. In conclusion, cardiomyocytes in rat heart become mature on the level of intracellular architecture and energy metabolism at the age of 3months
    corecore