360 research outputs found

    Ground-gamma band mixing and evolution of collectivity in even-even neutron-rich nuclei with 40<Z<50

    Full text link
    We propose an extended band mixing formalism capable of describing the ground-gamma band interaction in a wide range of collective spectra beyond the regions of well deformed nuclei. On this basis we explain the staggering effects observed in the gamma bands of Mo, Ru and Pd nuclei providing a consistent interpretation of new experimental data in the neutron rich region. As a result the systematic behavior of the odd-even staggering effect and some general characteristics of the spectrum such as the mutual disposition of the bands, the interaction strength and the band structures is explained as the manifestation of respective changes in collective dynamics of the system.Comment: 17 pages, 6 figures, 4 table

    Parity shift and beat staggering structure of octupole bands in a collective model for quadrupole-octupole deformed nuclei

    Full text link
    We propose a collective model formalism which describes the strong parity shift observed in low-lying spectra of nuclei with octupole deformations together with the fine rotational band structure developed at higher angular momenta. The parity effect is obtained by the Schroedinger equation for oscillations of the reflection asymmetric (octupole) shape between two opposite orientations in an angular momentum dependent double-well potential. The rotational structure is obtained by a collective quadrupole-octupole rotation Hamiltonian. The model scheme reproduces the complicated beat staggering patterns observed in the octupole bands of light actinide nuclei. It explains the angular momentum evolution of octupole spectra as the interplay between the octupole shape oscillation (parity shift) mode and the stable quadrupole-octupole rotation mode.Comment: 16 pages, 7 figure

    Analysis of negative magnetoresistance. Statistics of closed paths. II. Experiment

    Full text link
    It is shown that a new kind of information can be extracted from the Fourier transform of negative magnetoresistance in 2D semiconductor structures. The procedure proposed provides the information on the area distribution function of closed paths and on the area dependence of the average length of closed paths. Based on this line of attack the method of analysis of the negative magnetoresistance is suggested. The method has been used to process the experimental data on negative magnetoresistance in 2D structures with different relations between the momentum and phase relaxation times. It is demonstrated this fact leads to distinction in the area dependence of the average length of closed paths.Comment: 5 pages, 5 figures, to be published in Phys.Rev.

    Two-dimensional semimetal in a wide HgTe quantum well: magnetotransport and energy spectrum

    Full text link
    The results of experimental study of the magnetoresistivity, the Hall and Shubnikov-de Haas effects for the heterostructure with HgTe quantum well of 20.2 nm width are reported. The measurements were performed on the gated samples over the wide range of electron and hole densities including vicinity of a charge neutrality point. Analyzing the data we conclude that the energy spectrum is drastically different from that calculated in framework of kPkP-model. So, the hole effective mass is equal to approximately 0.2m00.2 m_0 and practically independent of the quasimomentum (kk) up to k20.7×1012k^2\gtrsim 0.7\times 10^{12} cm2^{-2}, while the theory predicts negative (electron-like) effective mass up to k2=6×1012k^2=6\times 10^{12} cm2^{-2}. The experimental effective mass near k=0, where the hole energy spectrum is electron-like, is close to 0.005m0-0.005 m_0, whereas the theoretical value is about 0.1m0-0.1 m_0

    Quantum corrections to conductivity: from weak to strong localization

    Full text link
    Results of detailed investigations of the conductivity and Hall effect in gated single quantum well GaAs/InGaAs/GaAs heterostructures with two-dimensional electron gas are presented. A successive analysis of the data has shown that the conductivity is diffusive for kFl=252k_F l=25-2 and behaves like diffusive one for kFl=20.5k_F l=2-0.5 down to the temperature T=0.4 K. It has been therewith found that the quantum corrections are not small at low temperature when kFl1k_F l\simeq 1. They are close in magnitude to the Drude conductivity so that the conductivity σ\sigma becomes significantly less than e2/he^{2}/h (the minimal σ\sigma value achieved in our experiment is about 3×108Ω13\times 10^{-8}\Omega^{-1} at kFl0.5k_Fl\simeq 0.5 and T=0.46T=0.46 K). We conclude that the temperature and magnetic field dependences of conductivity in whole kFlk_Fl range are due to changes of quantum corrections.Comment: RevTex 4.0, 10 figures, 7 two-column page

    The valence band energy spectrum of HgTe quantum wells with inverted band structures

    Full text link
    The energy spectrum of the valence band in HgTe/Cdx_xHg1x_{1-x}Te quantum wells with a width (820)(8-20)~nm has been studied experimentally by magnetotransport effects and theoretically in framework 44-bands kPkP-method. Comparison of the Hall density with the density found from period of the Shubnikov-de Haas (SdH) oscillations clearly shows that the degeneracy of states of the top of the valence band is equal to 2 at the hole density p<5.5×1011p< 5.5\times 10^{11}~cm2^{-2}. Such degeneracy does not agree with the calculations of the spectrum performed within the framework of the 44-bands kPkP-method for symmetric quantum wells. These calculations show that the top of the valence band consists of four spin-degenerate extremes located at k0k\neq 0 (valleys) which gives the total degeneracy K=8K=8. It is shown that taking into account the "mixing of states" at the interfaces leads to the removal of the spin degeneracy that reduces the degeneracy to K=4K=4. Accounting for any additional asymmetry, for example, due to the difference in the mixing parameters at the interfaces, the different broadening of the boundaries of the well, etc, leads to reduction of the valleys degeneracy, making K=2K=2. It is noteworthy that for our case two-fold degeneracy occurs due to degeneracy of two single-spin valleys. The hole effective mass (mhm_h) determined from analysis of the temperature dependence of the amplitude of the SdH oscillations show that mhm_h is equal to (0.25±0.02)m0(0.25\pm0.02)\,m_0 and weakly increases with the hole density. Such a value of mhm_h and its dependence on the hole density are in a good agreement with the calculated effective mass.Comment: 8 pages, 11 figure
    corecore