1,906 research outputs found

    New distance and depth estimates from observations of eclipsing binaries in the SMC

    Get PDF
    A sample of 33 eclipsing binaries observed in a field of the SMC with FLAMES@VLT is presented. The radial velocity curves obtained, together with existing OGLE light curves, allowed the determination of all stellar and orbital parameters of these binary systems. The mean distance modulus of the observed part of the SMC is 19.05, based on the 26 most reliable systems. Assuming an average error of 0.1 mag on the distance modulus to an individual system, and a gaussian distribution of the distance moduli, we obtain a 2-sigma depth of 0.36 mag or 10.6 kpc. Some results on the kinematics of the binary stars and of the H II gas are also given.Comment: 6 pages, 4 figures, Proc. IAU Symp. No 256, The Magellanic System: Stars, Gas and Galaxies, eds. Jacco Th. van Loon & Joana M. Oliveir

    Vortex-lattice pinning in two-component Bose-Einstein condensates

    Full text link
    We investigate the vortex-lattice structure for single- and two-component Bose-Einstein condensates in the presence of an optical lattice, which acts as a pinning potential for the vortices. The problem is considered in the mean-field quantum-Hall regime, which is reached when the rotation frequency Ω\Omega of the condensate in a radially symmetric trap approaches the (radial) trapping frequency ω\omega and the interactions between the atoms are weak. We determine the vortex-lattice phase diagram as a function of optical-lattice strength and geometry. In the limit of strong pinning the vortices are always pinned at the maxima of the optical-lattice potential, similar to the slow-rotation case. At intermediate pinning strength, however, due to the competition between interactions and pinning energy, a structure arises for the two-component case where the vortices are pinned on lines of minimal potential

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    HST astrometry in the 30 Doradus region: II. Runaway stars from new proper motions in the Large Magellanic Cloud

    Full text link
    We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our pilot archival study. We demonstrate that a relatively short epoch difference of 3 years is sufficient to reach a ∼\sim0.1 mas yr−1^{-1} level of precision or better. A number of stars have relative proper motions exceeding a 3-sigma error threshold, representing a mixture of Milky Way denizens and 17 potential LMC runaway stars. Based upon 183 VFTS OB-stars with the best proper motions, we conclude that none of them move faster than ∼\sim0.3 mas yr−1^{-1} in each coordinate -- equivalent to ∼\sim70 km s−1^{-1}. Among the remaining 351 VFTS stars with less accurate proper motions, only one candidate OB runaway can be identified. We rule out any OB star in our sample moving at a tangential velocity exceeding ∼\sim120 km s−1^{-1}. The most significant result of this study is finding 10 stars over wide range of masses, which appear to be ejected from the massive star cluster R136 in the tangential plane to angular distances from 35′′35^{\prime\prime} out to 407′′407^{\prime\prime}, equivalent to 8-98 pc. The tangential velocities of these runaways appear to be correlated with apparent magnitude, indicating a possible dependence on the stellar mass.Comment: 45 pages (in referee format), 12 figures, 3 tables. Submitted to AJ. Comments are welcom

    THE Hα EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION

    Get PDF
    The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M[subscript ⊙] are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass–period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between L[suscript Hα]/L[subscript bol] and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in L[subscript Hα]/L[subscript bol] with Rossby number for slow rotators, with an index of −1.7 ± 0.1.National Science Foundation (U.S.). Astronomy and Astrophysics Postdoctoral Fellowship (Award AST-1602597

    The VLT-FLAMES Tarantula Survey XXII. Multiplicity properties of the B-type stars

    Get PDF
    We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate relative radial velocities from the helium and metal absorption lines for each of our targets. Objects with significant radial-velocity variations (and with an amplitude larger than 16 km/s) are classified as spectroscopic binaries. We find an observed spectroscopic binary fraction (defined by periods of 0.1) for the B-type stars, f_B(obs) = 0.25 +/- 0.02, which appears constant across the field of view, except for the two older clusters (Hodge 301 and SL 639). These two clusters have significantly lower fractions of 0.08 +/- 0.08 and 0.10 +/- 0.09, respectively. Using synthetic populations and a model of our observed epochs and their potential biases, we constrain the intrinsic multiplicity properties of the dwarf and giant (i.e. relatively unevolved) B-type stars in 30 Dor. We obtain a present-day binary fraction f_B(true) = 0.58 +/- 0.11, with a flat period distribution. Within the uncertainties, the multiplicity properties of the B-type stars agree with those for the O stars in 30 Dor from the VFTS.Comment: Accepted by A&
    • …
    corecore