37 research outputs found
Intelligent automatic sleep staging model based on CNN and LSTM
Since electroencephalogram (EEG) is a significant basis to treat and diagnose somnipathy, sleep electroencephalogram automatic staging methods play important role in the treatment and diagnosis of sleep disorders. Due to the characteristics of weak signals, EEG needs accurate and efficient algorithms to extract feature information before applying it in the sleep stages. Conventional feature extraction methods have low efficiency and are difficult to meet the time validity of fast staging. In addition, it can easily lead to the omission of key features owing to insufficient a priori knowledge. Deep learning networks, such as convolutional neural networks (CNNs), have powerful processing capabilities in data analysis and data mining. In this study, a deep learning network is introduced into the study of the sleep stage. In this study, the feature fusion method is presented, and long-term and short-term memory (LSTM) is selected as the classification network to improve the accuracy of sleep stage recognition. First, based on EEG and deep learning network, an automatic sleep phase method based on a multi-channel EGG is proposed. Second, CNN-LSTM is used to monitor EEG and EOG samples during sleep. In addition, without any signal preprocessing or feature extraction, data expansion (DA) can be realized for unbalanced data, and special data and non-general data can be deleted. Finally, the MIT-BIH dataset is used to train and evaluate the proposed model. The experimental results show that the EEG-based sleep phase method proposed in this paper provides an effective method for the diagnosis and treatment of sleep disorders, and hence has a practical application value
NEDD4L facilitates granulosa cell ferroptosis by promoting GPX4 ubiquitination and degradation
Background: Polycystic ovary syndrome (PCOS) is an androgen disorder and ovarian dysfunction disease in women of reproductive age. The cell death of granulosa cells (GCs) plays an important role in the development of PCOS. However, the mechanism of GC death is still unclear.
Methods: In the current study, NEDD4L was found to be elevated in PCOS GEO (Gene Expression Omnibus) databases and mouse models. The cell viability was analyzed by CCK-8 and FDA staining. The expression of ferroptosis markers was assessed by ELISA and immunofluorescence. The direct interaction of GPX4 and NEDD4L was verified by co-immunoprecipitation assay.
Result: Functionally, results from CCK-8 and FDA staining demonstrated that NEDD4L inhibited the cell viability of KGN cells and NEDD4L increased the levels of iron, malonyldialdehyde, and reactive oxygen species and decreased glutathione levels. Moreover, the cell death of KGN induced by NEDD4L was blocked by ferroptosis inhibitor, suggesting that NEDD4L regulates KGN cell ferroptosis. Mechanistically, NEDD4L directly interacts with GPX4 and promotes GPX4 ubiquitination and degradation.
Conclusion: Taken together, our study indicated that NEDD4L facilitates GC ferroptosis by promoting GPX4 ubiquitination and degradation and contributes to the development of PCOS
Genetic Diversity of Carbapenem-Resistant Enterobacteriaceae (CRE) Clinical Isolates From a Tertiary Hospital in Eastern China
The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is increasing globally, with different molecular mechanisms described. Here we studied the molecular mechanisms of carbapenem resistance, including clonal and plasmid dissemination, of 67 CRE isolates collected between 2012 and 2016 from a tertiary hospital in Eastern China, an CRE endemic region. Species identification and susceptibility testing were performed using the BD Phoenix Automated Microbiology System. Isolates were characterized by PCR (for carbapenemases, ESBLs, AmpC and porin genes), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and conjugation transfer experiments. Selected blaKPC-2 -harboring plasmids were subjected to next-generation sequencing using the Illumina Miseq platform. Among the 67 CRE isolates, 42 Klebsiella pneumoniae, 10 Serratia marcescens, 6 Enterobacter cloacae, 2 Raoultella ornithinolytica, 2 K. oxytoca, 1 K. aerogenes, and 4 Escherichia coli isolates were identified. Six different carbapenemases were detected, including blaKPC-2 (n = 45), blaKPC-3 (n = 1), blaNDM-1 (n = 6), blaNDM-5 (n = 1), blaIMP-4 (n = 2), and blaVIM-1 (n = 2); blaOXA-48-like genes were not detected. One E. cloacae strain possessed both blaNDM-1 and blaKPC-3, while two E. cloacae isolates harbored blaNDM-1 and blaVIM-1. ESBLs (CTX-M, SHV, and TEM) and/or AmpC (CMY, DHA, and ACT/MIR) genes were also identified in 59 isolates, including 13 strains that lacked carbapenemases. Several insertions or stop codon mutations were found within porin genes of K. pneumoniae, E. coli and S. marcescens isolates, both with and without carbapenemases. The 42 K. pneumoniae isolates belonged to 12 different sequence types (ST), with ST11 being the most common, while the 6 E. cloacae isolates comprised 4 different STs. The 10 S. marcescens all shared the same PFGE pulsotype, suggestive of clonal spread. Complete plasmid sequencing and PCR screening revealed both intra-strain and inter-species spread of a common blaKPC-2-harboring plasmid in our hospital. Taken together, our study revealed extensive genetic diversity among CRE isolates form a single Chinese hospital. CRE isolates circulating in the hospital differ significantly in their species, STs, porin genes, carbapenemase genes, and their plasmid content, highlighting the complex dissemination of CRE in this endemic region
Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model
BACKGROUND: Ulcerative colitis is a chronic inflammatory disease and involves multiple etiological factors. Acetic acid (AA)-induced colitis is a reproducible and simple model, sharing many characteristics with human colitis. N-acetylcysteine (NAC) has been widely used as an antioxidant in vivo and in vitro. NAC can affect several signaling pathways involving in apoptosis, angiogenesis, cell growth and arrest, redox-regulated gene expression, and inflammatory response. Therefore, NAC may not only protect against the direct injurious effects of oxidants, but also beneficially alter inflammatory events in colitis. This study was conducted to investigate whether NAC could alleviate the AA-induced colitis in a porcine model. METHODS: Weaned piglets were used to investigate the effects of NAC on AA-induced colitis. Severity of colitis was evaluated by colon histomorphology measurements, histopathology scores, tissue myeloperoxidase activity, as well as concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon. The protective role of NAC was assessed by measurements of antioxidant status, growth modulator, cell apoptosis, and tight junction proteins. Abundances of caspase-3 and claudin-1 proteins in colonic mucosae were determined by the Western blot method. Epidermal growth factor receptor, amphiregulin, tumor necrosis factor-alpha (TNF-α), and toll-like receptor 4 (TLR4) mRNA levels in colonic mucosae were quantified using the real-time fluorescent quantitative PCR. RESULTS: Compared with the control group, AA treatment increased (P < 0.05) the histopathology scores, intraepithelial lymphocyte (IEL) numbers and density in the colon, myeloperoxidase activity, the concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon, while reducing (P < 0.05) goblet cell numbers and the protein/DNA ratio in the colonic mucosa. These adverse effects of AA were partially ameliorated (P < 0.05) by dietary supplementation with NAC. In addition, NAC prevented the AA-induced increase in caspase-3 protein, while stimulating claudin-1 protein expression in the colonic mucosa. Moreover, NAC enhanced mRNA levels for epidermal growth factor and amphiregulin in the colonic mucosa. CONCLUSION: Dietary supplementation with NAC can alleviate AA-induced colitis in a porcine model through regulating anti-oxidative responses, cell apoptosis, and EGF gene expression
Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model
BACKGROUND: Ulcerative colitis is a chronic inflammatory disease and involves multiple etiological factors. Acetic acid (AA)-induced colitis is a reproducible and simple model, sharing many characteristics with human colitis. N-acetylcysteine (NAC) has been widely used as an antioxidant in vivo and in vitro. NAC can affect several signaling pathways involving in apoptosis, angiogenesis, cell growth and arrest, redox-regulated gene expression, and inflammatory response. Therefore, NAC may not only protect against the direct injurious effects of oxidants, but also beneficially alter inflammatory events in colitis. This study was conducted to investigate whether NAC could alleviate the AA-induced colitis in a porcine model. METHODS: Weaned piglets were used to investigate the effects of NAC on AA-induced colitis. Severity of colitis was evaluated by colon histomorphology measurements, histopathology scores, tissue myeloperoxidase activity, as well as concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon. The protective role of NAC was assessed by measurements of antioxidant status, growth modulator, cell apoptosis, and tight junction proteins. Abundances of caspase-3 and claudin-1 proteins in colonic mucosae were determined by the Western blot method. Epidermal growth factor receptor, amphiregulin, tumor necrosis factor-alpha (TNF-α), and toll-like receptor 4 (TLR4) mRNA levels in colonic mucosae were quantified using the real-time fluorescent quantitative PCR. RESULTS: Compared with the control group, AA treatment increased (P < 0.05) the histopathology scores, intraepithelial lymphocyte (IEL) numbers and density in the colon, myeloperoxidase activity, the concentrations of malondialdehyde and pro-inflammatory mediators in the plasma and colon, while reducing (P < 0.05) goblet cell numbers and the protein/DNA ratio in the colonic mucosa. These adverse effects of AA were partially ameliorated (P < 0.05) by dietary supplementation with NAC. In addition, NAC prevented the AA-induced increase in caspase-3 protein, while stimulating claudin-1 protein expression in the colonic mucosa. Moreover, NAC enhanced mRNA levels for epidermal growth factor and amphiregulin in the colonic mucosa. CONCLUSION: Dietary supplementation with NAC can alleviate AA-induced colitis in a porcine model through regulating anti-oxidative responses, cell apoptosis, and EGF gene expression
Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations
Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach
Interaction Between Tectonics and Climate Encoded in the Planform Geometry of Stream Networks on the Eastern Tibetan Plateau
Abstract Stream networks are highly abundant across Earth's surface, reflecting the tectonic and climatic history under which they have developed. Recent studies suggest that branching angles are strongly correlated with climatic aridity. However, the impact of tectonic forcing, especially in tectonically active regions, remains ambiguous. Here we analyze branching angles between headwater channels of the major river networks on the eastern Tibetan Plateau, a region with complex tectonics, variable climate, and diverse landscapes. We find that spatial variations in tectonic uplift (as reflected in channel gradients) shape the branching geometry of stream networks on the steep eastern margin, while in the flat interior of the eastern Tibetan Plateau, branching angles are mainly controlled by climatic aridity. This leads to the conclusion that, in the steep margin of the eastern Tibetan Plateau, climatic impacts on branching angles are overprinted by stronger tectonic controls
The accuracy of intraocular lens power calculation formulas based on artificial intelligence in highly myopic eyes: a systematic review and network meta-analysis
ObjectiveTo systematically compare and rank the accuracy of AI-based intraocular lens (IOL) power calculation formulas and traditional IOL formulas in highly myopic eyes.MethodsWe screened PubMed, Web of Science, Embase, and Cochrane Library databases for studies published from inception to April 2023. The following outcome data were collected: mean absolute error (MAE), percentage of eyes with a refractive prediction error (PE) within ±0.25, ±0.50, and ±1.00 diopters (D), and median absolute error (MedAE). The network meta-analysis was conducted by R 4.3.0 and STATA 17.0.ResultsTwelve studies involving 2,430 adult myopic eyes (with axial lengths >26.0 mm) that underwent uncomplicated cataract surgery with mono-focal IOL implantation were included. The network meta-analysis of 21 formulas showed that the top three AI-based formulas, as per the surface under the cumulative ranking curve (SUCRA) values, were XGBoost, Hill-RBF, and Kane. The three formulas had the lowest MedAE and were more accurate than traditional vergence formulas, such as SRK/T, Holladay 1, Holladay 2, Haigis, and Hoffer Q regarding MAE, percentage of eyes with PE within ±0.25, ±0.50, and ±1.00 D.ConclusionsThe top AI-based formulas for calculating IOL power in highly myopic eyes were XGBoost, Hill-RBF, and Kane. They were significantly more accurate than traditional vergence formulas and ranked better than formulas with Wang–Koch AL modifications or newer generations of formulas such as Barrett and Olsen.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022335969
Interaction Between Tectonics and Climate Encoded in the Planform Geometry of Stream Networks on the Eastern Tibetan Plateau
Stream networks are highly abundant across Earth's surface, reflecting the tectonic and climatic history under which they have developed. Recent studies suggest that branching angles are strongly correlated with climatic aridity. However, the impact of tectonic forcing, especially in tectonically active regions, remains ambiguous. Here we analyze branching angles between headwater channels of the major river networks on the eastern Tibetan Plateau, a region with complex tectonics, variable climate, and diverse landscapes. We find that spatial variations in tectonic uplift (as reflected in channel gradients) shape the branching geometry of stream networks on the steep eastern margin, while in the flat interior of the eastern Tibetan Plateau, branching angles are mainly controlled by climatic aridity. This leads to the conclusion that, in the steep margin of the eastern Tibetan Plateau, climatic impacts on branching angles are overprinted by stronger tectonic controls.ISSN:0094-8276ISSN:1944-800
Branching_angle_on_ETP_hexagon
Shape files of  hexagons analyzed on the eastern Tibetan Plateau, including ID of each hexagon (GRID_ID), mean aridity index (AI), mean topographic slope  (TopoSlope), mean branching angles  (angle [°]), mean channel slope (ChnlSlope) and  mean channel steepness index (MeanKSN) of each hexagon.</p