37 research outputs found

    The effect of pricing frame on purchase intention: A mediated moderation model of product type

    No full text
    With the development of Internet and e-commerce, pricing frame (like partitioned pricing vs. combined pricing) plays an important role in behavioral decision-making. Previous studies found that compared with combined pricing, partitioned pricing prevailed in its influence on purchase intention, but some found the reverse results. Researchers categorized them into the different kinds of moderating roles, which included the variables related to price composition, consumer&#39;s characteristics, seller&#39;s reputation and external situations, etc. But the role of product type (hedonic goods vs. utilitarian goods) was seldom investigated. Meantime, some studies found its underlying emotional reactions of consumers before they bought or decided to buy the hedonic goods, which called anticipatory guilt. So this was the main focus of this study. We developed three hypotheses and designed two online experiments in the 2 (pricing frame: partitioned pricing vs. combined pricing)&times;2 (product type: hedonic goods vs. utilitarian goods) between-subjects design. The results of Experiment 1 showed that the main effect of pricing frame on purchase intention was significant, which favored partitioned pricing. Meanwhile, product type moderated the effect of pricing frame on purchase intention. Specifically, compared with combined pricing, partitioned pricing increased the purchase intention for hedonic goods, but not utilitarian goods. Further, in Experiment 2, we found that the moderation effect was fully mediated by anticipatory guilt, which verified a mediated moderation effect. These findings confirmed and extended previous studies suggesting that partitioned pricing prevailed more than combined pricing, especially in the online business context. Moreover, there was some boundary conditions of product type on the effect of partitioned pricing. Furthermore, the emotional reactions of anticipatory guilt was investigated to mediate the interaction effect. Our findings can also be a useful guideline for marketing business to adopt the suitable pricing tactics to enhance the purchase intention. &nbsp;</p

    Towards Carbon Neutrality: A Comprehensive Analysis on Total Factor Carbon Productivity of the Yellow River Basin, China

    No full text
    Increasing total factor carbon productivity (TFCP) is crucial to mitigate global climate change and achieve carbon neutrality target. The Yellow River Basin is a critical energy area in China, but its TFCP is relatively low, which results in particularly prominent environmental problems. This paper investigates TFCP using MCPI, Global Moran’s I and kernel density estimation based on panel data of the 9 provinces along this vast basin in 2007–2017. The results demonstrate that: the average value of TFCP fluctuates around 1 and overall TFCP evolution exhibits significant spatial aggregation effect, and technological progress is the dominant impetus for TFCP growth. At regional level, regional heterogeneities of TFCP change and its dynamics exactly exist, with Qinghai the lowest performance and Shandong the highest performance. Moreover, global Moran’s I index reflects there is a significant positive spatial correlation between provincial TFCP, and cumulative TFCP takes on a certain degree of club convergence features. Furthermore, specific and targeted recommendations have drawn from this paper, in particular for the Yellow River Basin, to increase TFCP and achieve sustainable development in the long run

    A Bibliometric Analysis of Melanoma Treated with Vaccinations Research from 2013 to 2023: A Comprehensive Review of the Literature

    No full text
    Backgrounds: Melanoma is a malignant tumor that originates from melanocytes and is known for its aggressive behavior and high metastatic potential. In recent years, vaccine therapy has emerged as a promising approach for the treatment of melanoma, offering targeted and individualized immunotherapy options. In this study, we conducted a bibliometric analysis to assess the global research trends and impact of publications related to melanoma and vaccine therapy. Methods: We retrieved relevant literature from the Web of Science database from the past decade (2013–2023) using keywords such as “melanoma”, “vaccine therapy”, and “cancer vaccines”. We used bibliometric indicators including publication trends, citation analysis, co-authorship analysis, and journal analysis to evaluate the research landscape of this field. Results: After screening, a total of 493 publications were included in the analysis. We found that melanoma and vaccine therapy have gained significant attention in the field of cancer immunotherapy, as evidenced by the numerous research output and increasing citation impact. The United States, China, and their organizations are the leading countries/institutes in terms of publication output, and collaborative research networks are prominent in this field. Clinical trials evaluating the safety and efficacy of vaccination treatment in melanoma patients are the focus of research. Conclusions: This study provide valuable insights into the novel research landscape of vaccine treatment of melanoma, which could inform future research directions and facilitate knowledge exchange among researchers in this field

    Altered temporal dynamics of brain activity in patients with generalized tonic-clonic seizures.

    No full text
    Generalized seizures engage bilateral networks from their onset at a low temporal scale. Previous studies findings have demonstrated focal/local brain activity abnormalities in the patients with generalized tonic-clonic seizures (GTCS). Resting state functional magnetic resonance imaging (fMRI) allows the detection of aberrant spontaneous brain activity in GTCS. Little is known, however, about alterations of dynamics (temporal variability) of spontaneous brain activity. It also remains unclear whether temporal variability of spontaneous brain activity is associated with disease severity. To address these questions, the current study assessed patients with GTCS (n = 35), and age- and sex-matched healthy controls (HCs, n = 33) who underwent resting state fMRI. We first assessed the dynamics of spontaneous brain activity using dynamic amplitude of low-frequency fluctuation (dALFF). Furthermore, the temporal variability of brain activity was quantified as the variance of dALFF across sliding window. Compared to HCs, patients with GTCS showed hyper-temporal variability of dALFF in parts of the default mode network, whereas they showed hypo-temporal variability in the somatomotor cortex. Furthermore, dynamic ALFF in the subgenual anterior cingulate cortex was positively correlated with duration of disease, indicating that disease severity is associated with excessive variability. These results suggest both an excessive variability and excessive stability in patients with GTCS. Overall, the current findings from brain activity dynamics contribute to our understanding of the pathophysiological mechanisms of generalized seizure

    Synthesis and Structure Characterization of Three Pharmaceutical Compounds Based on Tinidazole

    No full text
    Tinidazole (TNZ), a 5-nitroimidazole derivative, has received increasing attention due to its pharmacological activities in treatment for amebic and parasitic infections. In this paper, we synthesized three novel drug supramolecular compounds successfully based on TNZ. The three compounds discussed were formed by TNZ and 2,6-dihydroxybenzoic acid (2,6-DHBA), 4-methylsalicylic acid (4-MAC), and 5-chloro-2-hydroxybenzoic acid (5-C-2-HBA). The N-H···O and O-H···O hydrogen bonds and weak C-H···O hydrogen bonds are the primary intermolecular forces in the construction of the three compounds. Crystal structure analysis revealed that all the compounds exhibit three-dimensional frameworks consisting of non-covalent interactions. Furthermore, six primary synthons, Ⅰ R22 (8), Ⅱ R21(6), Ⅲ R22(12), Ⅳ R33(9), Ⅴ R22(12), Ⅵ R33(9), formed through various hydrogen bonds are found in the three compounds. Moreover, the resulting pharmaceutical supramolecular compounds show improved stability. Single-crystal X-ray diffraction analysis, infrared spectroscopy (IR), element analysis, and thermogravimetric analysis (TGA) are reported

    Enhancing proton exchange membrane water electrolysis by building electron/proton pathways

    No full text
    Proton exchange membrane water electrolysis (PEMWE) plays a critical role in practical hydrogen production. Except for the electrode activities, the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer (CL) and the inefficient transport structure. In this work, the PEDOT:F (Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid) ionomers with mixed proton-electron conductor (MPEC) were fabricated, which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface. The PEDOT:F exhibits strong perfluorosulfonic acid (PFSA) side chain extensibility, enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks, thus contributing to the surface reactant water adsorption. The PEMWE device employing membrane electrode assembly (MEA) prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 ​V under a water-splitting current of 2 ​A ​cm−2 (1.746 ​V at 2A cm−2 for MEA prepared by Nafion D520), along with exceptional long-term stability. Meanwhile, the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance, which is reduced by 23.4 ​% and 17.6 ​% at 0.1 ​A ​cm−2 and 1.5 ​A ​cm−2, respectively, as compared to the MEA prepared by D520. The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F, coupled with its remarkable structural stability. This characteristic enables expeditious mass transfer during electrolytic reactions, thereby enhancing the performance of PEMWE devices

    Myostatin Knockout Regulates Bile Acid Metabolism by Promoting Bile Acid Synthesis in Cattle

    No full text
    Myostatin (MSTN) is a major negative regulator of skeletal muscle mass and causes a variety of metabolic changes. However, the effect of MSTN knockout on bile acid metabolism has rarely been reported. In this study, the physiological and biochemical alterations of serum in MSTN+/&minus; and wild type (WT) cattle were investigated. There were no significant changes in liver and kidney biochemical indexes. However, compared with the WT cattle, lactate dehydrogenase, total bile acid (TBA), cholesterol, and high-density lipoprotein (HDL) in the MSTN+/&minus; cattle were significantly increased, and glucose, low-density lipoprotein (LDL), and triglycerides (TG) were significantly decreased, indicating that MSTN knockout affected glucose and lipid metabolism and total bile acids content. Targeted metabolomic analysis of the bile acids and their derivatives was performed on serum samples and found that bile acids were significantly increased in the MSTN+/&minus; cattle compared with the WT cattle. As the only bile acid synthesis organ in the body, we performed metabolomic analysis on the liver to study the effect of MSTN knockout on hepatic metabolism. Metabolic pathway enrichment analysis of differential metabolites showed significant enrichment of the primary bile acid biosynthesis and bile secretion pathway in the MSTN+/&minus; cattle. Targeted metabolomics data further showed that MSTN knockout significantly increased bile acid content in the liver, which may have resulted from enhanced bile acid synthesis due to the expression of bile acid synthesis genes, cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), and upregulation in the liver of the MSTN+/&minus; cattle. These results indicate that MSTN knockout does not adversely affect bovine fitness but regulates bile acid metabolism via enhanced bile acid synthesis. This further suggests a role of MSTN in regulating metabolism
    corecore