26 research outputs found

    Magnetic Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for Sensitive Label-Free Detection of Methylene Blue in Groundwater

    No full text
    Tiny changes in the mass of the sensor in a quartz crystal microbalance with dissipation monitoring (QCM-D) can be observed. However, the lack of specificity for target species has hindered the use of QCM-D. Here, molecularly imprinted polymers (MIPs) were used to modify a QCM-D sensor to provide specificity. The MIPs were formed in the presence of sodium dodecyl benzene sulfonate. Imprinted layers on Fe3O4 nanoparticles were formed using pyrrole as the functional monomer and cross-linker and methylene blue (MB) as a template. The MIPs produced were then attached to the surface of a QCM-D sensor. The MIPs-coated QCM-D sensor could recognize MB and gave a linear response in the concentration range 25 to 1.5 × 102 µg/L and a detection limit of 1.4 µg/L. The QCM-D sensor was selective for MB over structural analogs. The MIPs-coated QCM-D sensor was successfully used to detect MB in river water and seawater samples, and the recoveries were good. This is the first time MB has been detected using a QCM-D sensor. Mass is an intrinsic property of matter, so this method could easily be extended to other target species by using different MIPs

    Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography

    No full text
    An organic-silica hybrid monolithic capillary column was fabricated by crosslinking (3-aminopropyl)trimethoxysilane (APTMS) modified mesoporous carbon nanoparticles (AP-MCNs) with tetramethoxysilane (TMOS) and n-butyltrimethoxysilane (C4-TriMOS). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, mercury intrusion porosimetry and inverse size-exclusion chromatography characterization proved the successful immobilization of mesoporous carbon nanoparticles (MCNs). The crosslinking of AP-MCNs into the hybrid monolithic matrix has significantly increased the reversed-phase retention of alkylbenzenes and chromatographic performance for small molecules separations in comparison with the neat one without MCNs. The resulting column efficiency of the mesoporous carbon nanoparticle-based butyl-silica hybrid monolithic column (MCN-C4-monolith) was up to ca. 116,600 N/m for the capillary liquid chromatography (cLC) separation of butylbenzene. Enhanced performance of proteins separation was achieved on the MCN-C4-monolith in comparison with the butyl-silica hybrid monolithic column without MCN (C4-monolith). The separation of peptides from bovine serum albumin (BSA) digest was carried out on the MCN-C4-monolith by capillary liquid chromatography-tandem mass spectrometry (cLC-MS/MS) with protein sequence coverage of 81.9%, suggesting its potential application in proteomics. (C) 2017 Elsevier B.V. All rights reserved

    Novel Sensitive High-Throughput Screening Strategy for Nitrilase-Producing Strains▿

    No full text
    Nitrilases have found wide use in the pharmaceutical industry for the production of fine chemicals, and it is important to have a method by which to screen libraries of isolated or engineered nitrilase variants (including bacteria and fungi). The conventional methods, such as high-performance liquid chromatography, liquid chromatography-mass spectrometry, capillary electrophoresis, or gas chromatography, are tedious and time-consuming. Therefore, a direct and sensitive readout of the nitrilase's activity has to be considered. In this paper, we report a novel time-resolved luminescent probe: o-hydroxybenzonitrile derivatives could be applied to detect the activity of the nitrilases. By the action of nitrilases, o-hydroxybenzonitrile derivatives can be transformed to the corresponding salicylic acid derivatives, which, upon binding Tb3+, serve as a photon antenna and sensitize Tb3+ luminescence. Because of the time-resolved property of the luminescence, the background from the other proteins (especially in the fermentation system) in the assay could be reduced and, therefore, the sensitivity was increased. Moreover, because the detection was performed on a 96- or 384-well plate, the activity of the nitrilases from microorganisms could be determined quickly. Based on this strategy, the best fermentation conditions for nitrilase-producing strains were obtained

    An Organic Solvent-Free Method for the Extraction of Ellagic Acid Compounds from Raspberry Wine Pomace with Assistance of Sodium Bicarbonate

    No full text
    Industrial processing of raspberry juice and wine generates considerable byproducts of raspberry pomace. Ellagic acids/ellagitannins, being characterized by their antioxidant and antiproliferation properties, constitute the majority of polyphenolics in the pomace and are valuable for recovery. In the present study, we developed a novel procedure with sodium bicarbonate assisted extraction (SBAE) to recover ellagic acid from raspberry wine pomace. Key parameters in the procedure, i.e., sodium bicarbonate concentration, temperature, time and solid/liquid (S/L) ratio, were investigated by single factor analysis and optimized subsequently by Response Surface Methodology (RSM). Optimal parameters for the SBAE method here were found to be 1.2% (w/v) NaHCO3, 1:93 (w/v) S/L ratio, 22 min and 100 °C. Under these conditions, the ellagic acid yield was 6.30 ± 0.92 mg/g pomace with an antioxidant activity of 79.0 ± 0.96 μmol Trolox eq/g pomace (DPPH assay), which are 2.37 and 1.32 times the values obtained by extraction with methanol–acetone–water solvent, respectively. The considerable improvement in ellagic acid extraction efficiency could be highly attributed to the reactions of lipid saponification and ellagitannin hydrolysis resulted from sodium bicarbonates. The present study has established an organic solvent-free method for the extraction of ellagic acid from raspberry wine pomace, which is feasible and practical in nutraceutical applications

    Coupling Strong Anion-Exchange Monolithic Capillary with MALDI-TOF MS for Sensitive Detection of Phosphopeptides in Protein Digest

    No full text
    Protein phosphorylation is one of the most biologically relevant and ubiquitous post-translational modifications. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a powerful tool for the analysis of protein phosphorylation by detection of phosphopeptides in phosphoprotein digest. Enrichment of phosphopeptides by immobilized metal ion affinity chromatography (IMAC) or metal oxide affinity chromatography (MOAC) followed with MALDI analysis is the common approach. However, the pH for loading and elution of phosphopeptides is incompatible with protein digestion as well as the preparation of the MALDI matrix solution. Therefore, some pretreatment steps, such as pH adjustment and desalting, are required, which make the approach tedious and insensitive. In this study, a strong anion-exchange (SAX) capillary monolith was prepared to enrich phosphopeptides from protein digest for MALDI-TOF MS analysis. It was found that phosphopeptides could be specifically retained on the SAX column at high pH around 8 and could be eluted by 5% formic acid. Thus, the protein digests without any pretreatment could be loaded onto the SAX column under basic pH condition; after removing nonphosphopeptides by washing, the bound phosphopeptides could be eluted directly onto a MALDI target and analyzed by MALDI-TOF MS. This approach significantly simplified the analytical procedures and reduced the sample loss. Because of the excellent MALDI MS compatible procedure and the microscale SAX column, a detection limit as low as 50 amol for the analysis of phosphopeptides from beta-casein digest was achieved. To circumvent the inconvenience of the sample loading, a new simple sample introducing method based on capillary action was proposed, which further reduced the detection limit to 10 amol

    Characterization of Selenite Reduction by <i>Lysinibacillus</i> sp. ZYM‑1 and Photocatalytic Performance of Biogenic Selenium Nanospheres

    No full text
    This study comprehensively investigated the feasibility of biogenic selenium nanomaterials (Se NMs) as a photocatalyst in dye degradation. The marine selenite-reducing bacterium Lysinibacillus sp. ZYM-1 was isolated. This strain can reduce selenite to Se NMs over a wide range of pH (5–9), selenite concentration (1–25 mM), and temperature (20–50 °C) within 48 h. Draft genome data suggested that sulfite reductase may be responsible for selenite reduction. Biogenic Se NMs generated under different conditions were subsequently characterized. The morphology and size of Se NMs were dependent on medium composition, pH, incubation time, selenite concentration, and temperature. Se nanospheres (Se NSs) exhibited significant visible light-driven photocatalytic activity on Rhodamine B (RhB) with H<sub>2</sub>O<sub>2</sub>. Three N-deethylation intermediates and phthalic acid were identified as degradation products of RhB by using liquid chromatography-high resolution mass spectrometry (LC-HRMS), indicating the coexistence of chromophore cleavage and the N-deethylation pathway

    Halobenzoquinones in Swimming Pool Waters and Their Formation from Personal Care Products

    No full text
    Halobenzoquinones (HBQs) are a class of disinfection byproducts (DBPs) of health relevance. In this study, we aimed to uncover which HBQs are present in swimming pools. To achieve this goal, we developed a new method capable of determining eight HBQs while overcoming matrix effects to achieve reliable quantification. The method provided reproducible and quantitative recovery (67–102%) and detection limits of 0.03–1.2 ng/L for all eight HBQs. Using this new method, we investigated water samples from 10 swimming pools and found 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) in all the pools at concentrations of 19299 ng/L, which was as much as 100 times higher than its concentration in the input tap water (1–6 ng/L). We also identified 2,3,6-trichloro-(1,4)­benzoquinone (TriCBQ), 2,3-dibromo-5,6-dimethyl-(1,4)­benzoquinone (DMDBBQ), and 2,6-dibromo-(1,4)­benzoquinone (2,6-DBBQ) in some swimming pools at concentrations of <0.111.3, <0.050.7, and <0.053.9 ng/L, respectively, but not in the input tap water. We examined several factors to determine why HBQ concentrations in pools were much higher than in the input tap water. Higher dissolved organic carbon (DOC), higher doses of chlorine and higher temperatures enhanced the formation of HBQs in the pools. In addition, we conducted laboratory disinfection experiments and discovered that personal care products (PCPs) such as lotions and sunscreens can serve as precursors to form additional HBQs, such as TriCBQ, 2,6-dichloro-3-methyl-(1,4)­benzoquinone (DCMBQ), and 2,3,5,6-tetrabromo-(1,4)­benzoquinone (TetraB-1,4-BQ). These results explained why some HBQs existed in swimming pools but not in the input water. This study presents the first set of occurrence data, identification of new HBQ DBPs, and the factors for their enhanced formation in the swimming pools

    Identification of Precursors and Mechanisms of Tobacco-Specific Nitrosamine Formation in Water during Chloramination

    No full text
    We report here that tobacco-specific nitrosamines (TSNAs) are produced from specific tobacco alkaloids during water chloramination. To identify the specific precursors for the formation of specific TSNAs in drinking water, we have developed a solid-phase extraction–liquid chromatography–tandem mass spectrometry (SPE–LC–MS/MS) method for simultaneous determination of five TSNAs and three tobacco alkaloids. Using this method, we detected nicotine (NIC) at 15.1 ng/L in a source water. Chloramination of this source water resulted in the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (0.05 ng/L) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (0.2 ng/L) along with the reduction of NIC to 1.1 ng/L, suggesting that NNK and NNAL were formed from NIC. To confirm that tobacco alkaloids are the precursors of TSNAs, we chloraminated water-leaching samples of tobacco from three brands of cigarettes and found that the formation of TSNAs coincides with the reduction of the alkaloids. Chloramination of individual alkaloids confirms that NNK and NNAL are produced from NIC, <i>N</i>-nitrosonornicotine (NNN) from nornicotine (NOR), and <i>N</i>-nitrosoanabasine (NAB) from anabasine (ANA). Furthermore, we have identified specific intermediates of these reactions and proposed potential pathways of formation of TSNAs from specific alkaloids. These results confirm that NNK and NNAL are the disinfection byproducts (DBPs) resulting from NIC in raw water

    C/N-Dependent Element Bioconversion Efficiency and Antimicrobial Protein Expression in Food Waste Treatment by Black Soldier Fly Larvae

    No full text
    The black soldier fly (BSF), Hermetia illucens, has emerged as a promising species for waste bioconversion and source of antimicrobial proteins (AMPs). However, there is a scarcity of research on the element transformation efficiency and molecular characterization of AMPs derived from waste management. Here, food waste treatment was performed using BSF larvae (BSFL) in a C/N ratio of 21:1&ndash;10:1, with a focus on the C/N-dependent element bioconversion, AMP antimicrobial activity, and transcriptome profiling. The C-larvae transformation rates were found to be similar among C/Ns (27.0&ndash;35.5%, p = 0.109), while the N-larvae rates were different (p = 0.001), with C/N 21:1&ndash;16:1 (63.5&ndash;75.0%) being higher than C/N 14:1&ndash;10:1 (35.0&ndash;45.7%). The C/N ratio did not alter the antimicrobial spectrum of AMPs, but did affect the activities, with C/N 21:1 being significantly lower than C/N 18:1&ndash;10:1. The lysozyme genes were found to be significantly more highly expressed than the cecropin, defensin, and attacin genes in the AMP gene family. Out of 51 lysozyme genes, C/N 18:1 and C/N 16:1 up-regulated (p &lt; 0.05) 14 and 12 genes compared with C/N 21:1, respectively, corresponding to the higher activity of AMPs. Overall, the element bioconversion efficiency and AMP expression can be enhanced through C/N ratio manipulation, and the C/N-dependent transcriptome regulation is the driving force of the AMP difference
    corecore