45 research outputs found

    Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xylose mother liquor has high concentrations of xylose (35%-40%) as well as other sugars such as L-arabinose (10%-15%), galactose (8%-10%), glucose (8%-10%), and other minor sugars. Due to the complexity of this mother liquor, further isolation of xylose by simple method is not possible. In China, more than 50,000 metric tons of xylose mother liquor was produced in 2009, and the management of sugars like xylose that present in the low-cost liquor is a problem.</p> <p>Results</p> <p>We designed a novel strategy in which <it>Bacillus subtilis </it>and <it>Candida maltosa </it>were combined and used to convert xylose in this mother liquor to xylitol, a product of higher value. First, the xylose mother liquor was detoxified with the yeast <it>C. maltosa </it>to remove furfural and 5-hydromethylfurfural (HMF), which are inhibitors of <it>B. subtilis </it>growth. The glucose present in the mother liquor was also depleted by this yeast, which was an added advantage because glucose causes carbon catabolite repression in <it>B. subtilis</it>. This detoxification treatment resulted in an inhibitor-free mother liquor, and the <it>C. maltosa </it>cells could be reused as biocatalysts at a later stage to reduce xylose to xylitol. In the second step, a recombinant <it>B. subtilis </it>strain with a disrupted xylose isomerase gene was constructed. The detoxified xylose mother liquor was used as the medium for recombinant <it>B. subtilis </it>cultivation, and this led to L-arabinose depletion and xylose enrichment of the medium. In the third step, the xylose was further reduced to xylitol by <it>C. maltosa </it>cells, and crystallized xylitol was obtained from this yeast transformation medium. <it>C. maltosa </it>transformation of the xylose-enriched medium resulted in xylitol with 4.25 g L<sup>-1</sup>·h<sup>-1 </sup>volumetric productivity and 0.85 g xylitol/g xylose specific productivity.</p> <p>Conclusion</p> <p>In this study, we developed a biological method for the purification of xylose from xylose mother liquor and subsequent preparation of xylitol by <it>C. maltosa</it>-mediated biohydrogenation of xylose.</p

    Effect of Functional Oligosaccharides and Ordinary Dietary Fiber on Intestinal Microbiota Diversity

    Get PDF
    Functional oligosaccharides, known as prebiotics, and ordinary dietary fiber have important roles in modulating the structure of intestinal microbiota. To investigate their effects on the intestinal microecosystem, three kinds of diets containing different prebiotics were used to feed mice for 3 weeks, as follows: GI (galacto-oligosaccharides and inulin), PF (polydextrose and insoluble dietary fiber from bran), and a GI/PF mixture (GI and PF, 1:1), 16S rRNA gene sequencing and metabolic analysis of mice feces were then conducted. Compared to the control group, the different prebiotics diets had varying effects on the structure and diversity of intestinal microbiota. GI and PF supplementation led to significant changes in intestinal microbiota, including an increase of Bacteroides and a decrease of Alloprevotella in the GI-fed, but those changes were opposite in PF fed group. Intriguing, in the GI/PF mixture-fed group, intestinal microbiota had the similar structure as the control groups, and flora diversity was upregulated. Fecal metabolic profiling showed that the diversity of intestinal microbiota was helpful in maintaining the stability of fecal metabolites. Our results showed that a single type of oligosaccharides or dietary fiber caused the reduction of bacteria species, and selectively promoted the growth of Bacteroides or Alloprevotella bacteria, resulting in an increase in diamine oxidase (DAO) and/or trimethylamine N-oxide (TMAO) values which was detrimental to health. However, the flora diversity was improved and the DAO values was significantly decreased when the addition of nutritionally balanced GI/PF mixture. Thus, we suggested that maintaining microbiota diversity and the abundance of dominant bacteria in the intestine is extremely important for the health, and that the addition of a combination of oligosaccharides and dietary fiber helps maintain the health of the intestinal microecosystem

    A Novel Epigenetic Regulator ZRF1: Insight into Its Functions in Plants

    No full text
    Recently, Zuotin-related factor 1 (ZRF1), an epigenetic regulator, was found to be involved in transcriptional regulation. In animals and humans, ZRF1 specifically binds to monoubiquitinated histone H2A through a ubiquitin-binding domain and derepresses Polycomb target genes at the beginning of cellular differentiation. In addition, ZRF1 can work as a tumor suppressor. According to bioinformatics analysis, ZRF1 homologs are widely found in plants. However, the current studies on ZRF1 in higher plants are limited and few in-depth studies of its functions have been reported. In this review, we aim to summarize the key role of AtZRF1a/b in Arabidopsis thaliana growth and development, as well as the research progress in this field in recent years

    Monitoring the Reduced Resilience of Forests in Southwest China Using Long-Term Remote Sensing Data

    No full text
    An increase in the frequency and severity of droughts associated with global warming has resulted in deleterious impacts on forest productivity in Southwest China. Despite attempts to explore the response of vegetation to drought, less is known about forest&rsquo;s resilience in response to drought in Southwest China. Here, the reduced resilience of the forest was found based on remotely sensed optical and microwave vegetation products. The spatial distribution and temporal variation of resilience-reduced forest were assessed using the standardized precipitation evapotranspiration index (SPEI) and vegetation optical depth (VOD). Our findings showed that 40&ndash;50% of the forest appeared to have abnormally low resilience approximately 6 months after the severe drought. The spatial distributions of abnormally low resilience had a good agreement with the regions affected by the 2009&ndash;2011 drought events. In particular, our results indicated that areas of afforestation were more susceptible to drought than natural forest, maybe due to the different water uptake strategy of the diverse root systems. Our findings highlight the vulnerability of afforestation areas to climate change, and recommend giving more attention to soil water availability

    Monitoring the Reduced Resilience of Forests in Southwest China Using Long-Term Remote Sensing Data

    No full text
    An increase in the frequency and severity of droughts associated with global warming has resulted in deleterious impacts on forest productivity in Southwest China. Despite attempts to explore the response of vegetation to drought, less is known about forest’s resilience in response to drought in Southwest China. Here, the reduced resilience of the forest was found based on remotely sensed optical and microwave vegetation products. The spatial distribution and temporal variation of resilience-reduced forest were assessed using the standardized precipitation evapotranspiration index (SPEI) and vegetation optical depth (VOD). Our findings showed that 40–50% of the forest appeared to have abnormally low resilience approximately 6 months after the severe drought. The spatial distributions of abnormally low resilience had a good agreement with the regions affected by the 2009–2011 drought events. In particular, our results indicated that areas of afforestation were more susceptible to drought than natural forest, maybe due to the different water uptake strategy of the diverse root systems. Our findings highlight the vulnerability of afforestation areas to climate change, and recommend giving more attention to soil water availability

    Optimization of succinic acid production from xylose mother liquor (XML) by Actinobacillus succinogenes using response surface methodology

    No full text
    AbstractIn the present study, conditions for succinic acid (SA) production using xylose mother liquor (XML) as culture medium by Actinobacillus succinogenes GXAS137 were optimized. Firstly, single–factor experiments were performed to evaluate the basal culture medium for SA fermentation. Thereafter, the Plackett–Burman design was used to screen out three significant factors of XML, corn steep liquor powder (CSLP) and MgCO3 affecting the SA yields from the original nine factors. Subsequent use of steepest ascent experiment determined the center area of the three factors. Finally, the response surface methodology was used to further optimize the interactions between the three main factors and predict the maximum SA concentration through Box-Behnken design. The optimal conditions of SA fermentation were maximally documented in the XML (110 g/L), CSLP (18.86 g/L) and MgCO3 (69.12 g/L). The maximum production of SA was 58.06 ± 0.57 g/L after 60 h with a yield of 0.72 ± 0.06 g/g total sugar, approaching the predicted value (57.99 g/L). It was 1.63-fold of the SA production obtained with the basic medium (35.54 g/L). In addition, batch fermentations were carried out in a 1.3-L stirred bioreactor and SA reached 58.47 g/L. These results indicate that XML could be an alternative substrate for the economical production of SA by A. succinogenes GXAS137

    Estimating leaf mass per area with leaf radiative transfer model

    No full text
    International audienc
    corecore