18 research outputs found

    Une solution semi-analytique améliorée pour le stress aux encoches arrondies

    Get PDF
    International audienceIn order to investigate the brittle failure of keyhole notched components, the stress distribution at notch tips is studied numerically and theoretically. A semi-analytical formula is developed for the maximum notch-tip-stress, incorporating crack-tip-blunting, stress-concentration and stress-equilibrium. Stress distributions in notched plates are simulated by the finite-element method, showing improved accuracy of the formula relative to established solutions. Application of the developed equation to components containing U-notches and blunt V-notches, is explored, demonstrating its broad applicability. When combined with stress-based failure criteria, the semi-analytical model can be employed to assess brittle failure in notched components with significance toward fracture in heterogeneous materials.Afin d’étudier la défaillance fragile des composants à encoche en trou de serrure, la répartition des contraintes aux extrémités des entailles est étudiée numériquement et théoriquement. Une formule semi-analytique est élaborée pour la contrainte maximale en pointe, intégrant l’atténuation des fissures, la concentration en contrainte et l’équilibre en contrainte. Les distributions de contraintes dans les plaques à encoches sont simulées par la méthode des éléments finis, ce qui montre une précision améliorée de la formule par rapport aux solutions établies. L’application de l’équation développée aux composants contenant des encoches en U et des encoches en V contondantes est explorée, démontrant ainsi sa large applicabilité. Lorsqu'il est combiné à des critères de rupture fondés sur des contraintes, le modèle semi-analytique peut être utilisé pour évaluer la défaillance fragile de composants entaillés présentant une importance significative pour la rupture dans des matériaux hétérogènes

    Encoding and storage of information in mechanical metamaterials

    Get PDF
    Information processing using material's own properties has gained increasing interest. Mechanical metamaterials, due to their diversity of deformation modes and wide design space, can be used to realize information processing, such as computing and storage. Here a mechanical metamaterial system is demonstrated for material-based encoding and storage of data through programmed reconfigurations of the metamaterial's structured building blocks. Sequential encoding and decoding are achieved in the three-dimensional (3D) printed pixelated mechanical metamaterial via kirigami-based "pixels" with programmable, temperature-dependent bistability. The mechanical metamaterial is demonstrated via a multistep deformation of encoding messages of texts and surfaces with arrays of binary data, and then decoding them by applying a predetermined stretching and heating regimen to sequentially retrieve layers of stored information and display them on its surface. This approach serves as a general framework to enable the encoding and storage of data with mechanical metamaterials.Published versionThis work was supported by the National Natural Science Foundation of China (Nos. 12132007 and 11921002). M.L. acknowledges the support from the Nanyang Technological University via the Presidential Postdoctoral Fellowship

    Aging differentially affects the loss of neuronal dendritic spine, neuroinflammation and memory impairment at rats after surgery.

    No full text
    It is known that age is an important factor for postoperative cognitive dysfunction (POCD) and the patients with POCD suffer from the impairment of multiple brain regions and multiple brain functions. However currently animal studies of POCD mainly focus on hippocampus region, therefore in this study we performed partial hepatectomy in young adult and aged rats to test the questions (1) whether POCD in animals involves other brain areas besides hippocampus; (2) how age influences POCD of young adult and aged animals. We found that (1) in young adult rats, the memory was not significantly affected (P>0.05) 1d, 3d and 7d after partial hepatectomy, but was significantly impaired (p<0.001) in aged rats 1d and 3d post-surgery; (2) in young adult rats, the surgery did not significantly affect the densities of dendritic spines of neurons at CA1, dentate gyrus (DG) and cingulate cortex (P>0.05, respectively) 1d and 3d post-surgery, but the spine densities at CA1 and DG of aged rats were significant reduced 1d and 3d post-surgery (p<0.001, respectively), however this didn't happen at cingulate cortex (P>0.05); (3) In young adult rats, surgery didn't affect the activation of microglia and levels of TNF-α and IL-1β at hippocampus (P>0.05), but significantly activated microglia and increased levels of TNF-α and IL-1β at hippocampus of aged rats (P<0.05). Our data suggest that (1) partial hepatectomy-induced POCD mainly involves hippocampus impairments, and (2) differential loss of neuronal dendritic spines and neuroinflammation at hippocampus are most likely the mechanism for the formation of POCD in aged rats

    Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    No full text
    Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus) and tobacco (Nicotiana tabacum) remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose) and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants
    corecore