5,352 research outputs found
Unifying and Merging Well-trained Deep Neural Networks for Inference Stage
We propose a novel method to merge convolutional neural-nets for the
inference stage. Given two well-trained networks that may have different
architectures that handle different tasks, our method aligns the layers of the
original networks and merges them into a unified model by sharing the
representative codes of weights. The shared weights are further re-trained to
fine-tune the performance of the merged model. The proposed method effectively
produces a compact model that may run original tasks simultaneously on
resource-limited devices. As it preserves the general architectures and
leverages the co-used weights of well-trained networks, a substantial training
overhead can be reduced to shorten the system development time. Experimental
results demonstrate a satisfactory performance and validate the effectiveness
of the method.Comment: To appear in the 27th International Joint Conference on Artificial
Intelligence and the 23rd European Conference on Artificial Intelligence,
2018. (IJCAI-ECAI 2018
- …