258 research outputs found

    Self-similarity in Laplacian Growth

    Full text link
    We consider Laplacian Growth of self-similar domains in different geometries. Self-similarity determines the analytic structure of the Schwarz function of the moving boundary. The knowledge of this analytic structure allows us to derive the integral equation for the conformal map. It is shown that solutions to the integral equation obey also a second order differential equation which is the one dimensional Schroedinger equation with the sinh inverse square potential. The solutions, which are expressed through the Gauss hypergeometric function, characterize the geometry of self-similar patterns in a wedge. We also find the potential for the Coulomb gas representation of the self-similar Laplacian growth in a wedge and calculate the corresponding free energy.Comment: 16 pages, 9 figure

    Exactly Integrable Dynamics of Interface between Ideal Fluid and Light Viscous Fluid

    Full text link
    It is shown that dynamics of the interface between ideal fluid and light viscous fluid is exactly integrable in the approximation of small surface slopes for two-dimensional flow. Stokes flow of viscous fluid provides a relation between normal velocity and pressure at interface. Surface elevation and velocity potential of ideal fluid are determined from two complex Burgers equations corresponding to analytical continuation of velocity potential at the interface into upper and lower complex half planes, respectively. The interface loses its smoothness if complex singularities (poles) reach the interface.Comment: 5 pages, 2 figures; submitted to Physics Letter

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    Integrable Structure of Interface Dynamics

    Full text link
    We establish the equivalence of a 2D contour dynamics to the dispersionless limit of the integrable Toda hierarchy constrained by a string equation. Remarkably, the same hierarchy underlies 2D quantum gravity.Comment: 5 pages, no figures, submitted to Phys. Rev. Lett, typos correcte

    A note on the extension of the polar decomposition for the multidimensional Burgers equation

    Full text link
    It is shown that the generalizations to more than one space dimension of the pole decomposition for the Burgers equation with finite viscosity and no force are of the form u = -2 viscosity grad log P, where the P's are explicitly known algebraic (or trigonometric) polynomials in the space variables with polynomial (or exponential) dependence on time. Such solutions have polar singularities on complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys. Rev. E (Rapid Comm.

    Laplacian Growth and Whitham Equations of Soliton Theory

    Full text link
    The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.Comment: 33 pages, 7 figures, typos corrected, new references adde

    Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    Get PDF
    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.Comment: latex, 5 pages, no figure
    • …
    corecore