10,406 research outputs found

    Entangling two distant nanocavities via a waveguide

    Full text link
    In this paper, we investigate the generation of continuous variable entanglement between two spatially-separate nanocavities mediated by a coupled resonator optical waveguide in photonic crystals. By solving the exact dynamics of the cavity system coupled to the waveguide, the entanglement and purity of the two-mode cavity state are discussed in detail for the initially separated squeezing inputs. It is found that the stable and pure entangled state of the two distant nanocavities can be achieved with the requirement of only a weak cavity-waveguide coupling when the cavities are resonant with the band center of the waveguide. The strong couplings between the cavities and the waveguide lead to the entanglement sudden death and sudden birth. When the frequencies of the cavities lie outside the band of the waveguide, the waveguide-induced cross frequency shift between the cavities can optimize the achievable entanglement. It is also shown that the entanglement can be easily manipulated through the changes of the cavity frequencies within the waveguide band.Comment: 8 pages, 8 figure

    Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles

    Get PDF
    We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy

    Fermion Zero Modes in Odd Dimensions

    Full text link
    We study the zero modes of the Abelian Dirac operator in any odd dimension. We use the stereographic projection between a (2n1)(2n-1) dimensional space and a (2n1)(2n-1) sphere embedded in a 2n2n dimensional space. It is shown that the Dirac operator with a gauge field of uniform field strengths in S2n1S^{2n-1} has symmetries of SU(nn)×\timesU(1) which is a subgroup of SO(2n2n). Using group representation theory, we obtain the number of fermion zero modes, as well as their explicit forms, in a simple way.Comment: 14 page

    Rigidity of compact Riemannian spin Manifolds with Boundary

    Full text link
    In this article, we prove new rigidity results for compact Riemannian spin manifolds with boundary whose scalar curvature is bounded from below by a non-positive constant. In particular, we obtain generalizations of a result of Hang-Wang \cite{hangwang1} based on a conjecture of Schroeder and Strake \cite{schroeder}.Comment: English version of "G\'eom\'etrie spinorielle extrins\`eque et rigidit\'es", Corollary 6 in Section 3 added, to appear in Letters Math. Phy

    A Study of CO Emission in High Redshift QSOs Using the Owens Valley Millimeter Array

    Get PDF
    Searches for CO emission in high-redshift objects have traditionally suffered from the accuracy of optically-derived redshifts due to lack of bandwidth in correlators at radio observatories. This problem has motivated the creation of the new COBRA continuum correlator, with 4 GHz available bandwidth, at the Owens Valley Radio Observatory Millimeter Array. Presented here are the first scientific results from COBRA. We report detections of redshifted CO(J=3-2) emission in the QSOs SMM J04135+10277 and VCV J140955.5+562827, as well as a probable detection in RX J0911.4+0551. At redshifts of z=2.846, z=2.585, and z=2.796, we find integrated CO flux densities of 5.4 Jy km/s, 2.4 Jy km/s, and 2.9 Jy km/s for SMM J04135+10277, VCV J140955.5+562827, and RX J0911.4+0551, respectively, over linewidths of Delta(V_{FWHM}) ~ 350 km/s. These measurements, when corrected for gravitational lensing, correspond to molecular gas masses of order M(H_2) ~ 10^{9.6-11.1} solar masses, and are consistent with previous CO observations of high-redshift QSOs. We also report 3-sigma upper limits on CO(3-2) emission in the QSO LBQS 0018-0220 of 1.3 Jy km/s. We do not detect significant 3mm continuum emission from any of the QSOs, with the exception of a tentative (3-sigma) detection in RX J0911.4+0551 of S_{3mm}=0.92 mJy/beam.Comment: 18 pages, 5 figures, 2 tables, accepted to ApJ. Changes made for version 2: citations added, 2 objects added to Table 2 and Figure

    Parker Instability in a Self-Gravitating Magnetized Gas Disk: I. Linear Stability Analysis

    Full text link
    To be a formation mechanism of such large-scale structures as giant molecular clouds (GMCs) and HI superclouds, the classical Parker instability driven by external gravity has to overcome three major obstacles: The convective motion accompanying the instability generates thin sheets than large condensations. The degree of density enhancement achieved by the instability is too low to make dense interstellar clouds. The time and the length scales of the instability are significantly longer and larger than the estimated formation time and the observed mean separation of the GMCs, respectively. This paper examines whether a replacement of the driving agent from the external to the self gravity might remove these obstacles by activating the gravitational instability in the Galactic ISM disk. The self gravity can suppress the convective motions, and a cooperative action of the Jeans and the Parker instabilities can remove all the obstacles confronting the classical version of the Parker instability. The mass and mean separation of the structures resulting from the odd-parity undular mode solution are shown to agree better with the HI superclouds than with the GMCs. We briefly discuss how inclusions of the external gravity and cosmic rays would modify behaviors of the odd-parity undular mode solution.Comment: 53 pages, 21 figure

    Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation.

    Get PDF
    BackgroundWell-differentiated thyroid cancer (WDTC) incidence in pediatrics is rising, most being papillary thyroid carcinoma (PTC). The objective of the study was to assess the prevalence of different mutations in pediatric WDTC and correlate the genotype with the clinical phenotype.MethodsThis is a single-center retrospective study. Thyroid tissue blocks from 42 consecutive pediatric WDTC patients who underwent thyroidectomy between 2001 and 2013 were analyzed at Quest Diagnostics for BRAF(V600E), RAS mutations (N,K,H), and RET/PTC and PAX8/PPARγ rearrangements, using validated molecular methods. Thyroid carcinomas included PTC, follicular thyroid carcinoma (FTC), and follicular variant of PTC (FVPTC).ResultsThirty-nine samples (29 females) were genotyped. The mean age at diagnosis was 14.7 years (range 7.9-18.4 years), and most were Hispanic (56.4%) or Caucasian (35.9%). The mean follow-up period was 2.9 years. Mutations were noted in 21/39 (53.8%), with both BRAF(V600E) (n = 9), and RET/PTC (n = 6) detected only in PTC. Mutations were detected in 2/5 FTC (PAX8/PPARγ and NRAS) and 3/6 FVPTC cases (PAX8/PPARγ). Of 28 PTC patients, 57.1% had mutations: 32.1% with BRAF(V600E), 21.4% with RET/PTC, and 3.6% with NRAS. Of patients with BRAF(V600E), 77.8% were Hispanic and 88.9% were >15 years, while all RET/PTC-positive patients were ≤15 years (p = 0.003). Tumor size, lymph node involvement, and distant metastasis at diagnosis (or soon after (131)I ablation) did not vary significantly based on the mutation.ConclusionsBRAF(V600E) was the most common mutation, especially in older and Hispanic adolescents. A larger, ethnically diverse pediatric cohort followed long term will enable the genotypic variability, clinical presentation, and response to therapy to be better assessed

    Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature

    Get PDF
    An apparatus capable of rapid measurement of the Seebeck coefficient and electrical resistivity at room temperature is reported. The novel aspect of this apparatus is the use of 4 multifunctional probes that comprise a junction of two conductors at the tip and serve as both thermocouples and electrical contacts. In addition, one of the probes has a built-in heater that can establish a temperature gradient in the sample for the Seebeck measurement. The technique does not require special sample geometries or preparation of contacts and is suitable for bulk and thin film materials. Together with automated sample stage and data acquisition, the equipment is able to measure both the Seebeck coefficient and electrical resistivity in less than 20 s with good accuracy. Less than 5% and 4% relative errors were found for the measurement of the Seebeck coefficient and electrical resistivity, respectively. This makes the apparatus especially useful for high throughput evaluation of thermoelectric materials.The authors wish to acknowledge financial support from the Accelerated Metallurgy Project, which is co-funded by the European Commission in the 7th Framework Programme (Contract No. NMP4-LA-2011-263206), by the European Space Agency and by the individual partner organizations. Moreover, the assistance of the electrical and mechanical workshops from the Cardiff School of Engineering is acknowledged
    corecore