73 research outputs found
The Zero-Point Field and Inertia
A brief overview is presented of the basis of the electromagnetic zero-point
field in quantum physics and its representation in stochastic electrodynamics.
Two approaches have led to the proposal that the inertia of matter may be
explained as an electromagnetic reaction force. The first is based on the
modeling of quarks and electrons as Planck oscillators and the method of
Einstein and Hopf to treat the interaction of the zero-point field with such
oscillators. The second approach is based on analysis of the Poynting vector of
the zero-point field in accelerated reference frames. It is possible to derive
both Newton's equation of motion, F=ma, and its relativistic co-variant form
from Maxwell's equations as applied to the zero-point field of the quantum
vacuum. This appears to account, at least in part, for the inertia of matter.Comment: 8 pages, no fig
Single spontaneous photon as a coherent beamsplitter for an atomic matterwave
In spontaneous emission an atom in an excited state undergoes a transition to
the ground state and emits a single photon. Associated with the emission is a
change of the atomic momentum due to photon recoil. Photon emission can be
modified close to surfaces and in cavities. For an ion, localized in front of a
mirror, coherence of the emitted resonance fluorescence has been reported. In
free space experiments demonstrated that spontaneous emission destroys motional
coherence. Here we report on motional coherence created by a single spontaneous
emission event close to a mirror surface. The coherence in the free atomic
motion is verified by atom interferometry. The photon can be regarded as a
beamsplitter for an atomic matterwave and consequently our experiment extends
the original recoiling slit Gedanken experiment by Einstein to the case where
the slit is in a robust coherent superposition of the two recoils associated
with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1
figur
Physical aspects of oracles for randomness, and Hadamard's conjecture
We analyze the physical aspects and origins of currently proposed oracles for
(absolute) randomness.Comment: 10 pages, 3 figures. arXiv admin note: substantial text overlap with
arXiv:1405.140
Rotation of electromagnetic fields and the nature of optical angular momentum
The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields
The Laser
The laser is an oscillator of light using an amplification process based on stimulated emission from atoms in an optical resonator. Laser light has a narrow spectral width and a high degree of spatial coherence. Laser beams are highly directional and can be focused into a tiny spot. Pulsed lasers produce ultrashort light pulses with ultrahigh peak power. Since its invention in 1960, the laser has enabled many scientific discoveries and has been at the core of a plethora of light-based technologies. It is truly a light fantastic
Stimulated emission of polarization-entangled photons
Entangled photon pairs -- discrete light quanta that exhibit non-classical
correlations -- play a crucial role in quantum information science (for example
in demonstrations of quantum non-locality and quantum cryptography). At the
macroscopic optical field level non-classical correlations can also be
important, as in the case of squeezed light, entangled light beams and
teleportation of continuous quantum variables. Here we use stimulated
parametric down-conversion to study entangled states of light that bridge the
gap between discrete and macroscopic optical quantum correlations. We
demonstrate experimentally the onset of laser-like action for entangled
photons. This entanglement structure holds great promise in quantum information
science where there is a strong demand for entangled states of increasing
complexity.Comment: 5 pages, 4 figures, RevTeX
Quantum to Classical Transition in a Single-Ion Laser
Stimulated emission of photons from a large number of atoms into the mode of
a strong light field is the principle mechanism for lasing in "classical"
lasers. The onset of lasing is marked by a threshold which can be characterised
by a sharp increase in photon flux as a function of external pumping strength.
The same is not necessarily true for the fundamental building block of a laser:
a single trapped atom interacting with a single optical radiation mode. It has
been shown that such a "quantum" laser can exhibit thresholdless lasing in the
regime of strong coupling between atom and radiation field. However, although
theoretically predicted, a threshold at the single-atom level could not be
experimentally observed so far. Here, we demonstrate and characterise a
single-atom laser with and without threshold behaviour by changing the strength
of atom-light field coupling. We observe the establishment of a laser threshold
through the accumulation of photons in the optical mode even for a mean photon
number substantially lower than for the classical case. Furthermore,
self-quenching occurs for very strong external pumping and constitutes an
intrinsic limitation of single-atom lasers. Moreover, we find that the
statistical properties of the emitted light can be adjusted for weak external
pumping, from the quantum to the classical domain. Our observations mark an
important step towards fundamental understanding of laser operation in the
few-atom limit including systems based on semiconductor quantum dots or
molecules.Comment: 19 pages, 4 figures, 10 pages supplement, accepted by Nature Physic
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
- …