1,217 research outputs found
Water temperature dynamics in High Arctic river basins
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3-3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7-2.3 °C km ). Non-glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9-5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p<0.01) with incoming short-wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin-specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high-latitude river systems
Evolution of a stream ecosystem in recently deglaciated terrain
Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was,<50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats
Experimental evidence that predator range expansion modifies alpine stream community structure
Climate change is projected to facilitate altitudinal range expansions of ‘lowland’ taxa, creating novel species interactions. However, how range shifts will alter biotic interactions and community structure in alpine streams is not well understood. In the Pyrénées, climate-induced physicochemical habitat change is hypothesized to facilitate the colonization of high-altitude streams by Perla grandis, a carnivorous stonefly. A field-based experiment was conducted in mesocosm channels beside a hillslope spring (2000 m asl) in the Taillon-Gabiétous catchment, French Pyrénées. The influence of P. grandis predation on community structure, feeding trait composition, body-size spectrum, and algal chlorophyll a concentration was examined. Gut contents were analyzed and used to identify consumed prey. Total invertebrate density was not significantly reduced by P. grandis, but Baetis spp. densities were depressed in the treatment channels through a combination of direct consumption and predator avoidance (emigration/drift). However, despite fewer grazers in the predator treatment channels, the magnitude of the trophic cascade effect on basal resources (measured as chlorophyll a density) was comparable between treatment and control channels. The results of this experiment suggest that size/species-specific predation, intraguild predation, and interference competition are the likely mechanisms that altered the body-size spectrum in treatment channels. In synergy with climate-driven physicochemical habitat change, the extinction risk of some range-restricted taxa (prey and other predators) could be increased where P. grandis colonization occurs. Hence, conservation efforts are required to ensure that additional anthropogenic stressors (e.g., nutrient enrichment, cattle trampling, hydropower development, ski runs, and tourism) are limited to minimize further pressures on these unique and sensitive habitats
Microform-scale variations in peatland permeability and their ecohydrological implications
1. The acrotelm-catotelm model of peatland hydrological and biogeochemical processes posits that the permeability of raised bogs is largely homogenous laterally but varies strongly with depth
through the soil profile; uppermost peat layers are highly permeable while deeper layers are, effectively, impermeable.
2. We measured down-core changes in peat permeability, plant macrofossil assemblages, dry bulk density and degree of humification beneath two types of characteristic peatland microform – ridges
and hollows – at a raised bog in Wales. Six 1424 C dates were also collected for one hollow and an adjacent ridge. 3. Contrary to the acrotelm-catotelm model, we found that deeper peat can be as highly permeable as near-surface peat and that its permeability can vary by more than an order of magnitude between microforms over horizontal distances of 1-5 metres. 4. Our palaeo-ecological data paint a complicated picture of microform persistence. Some microforms can remain in the same position on a bog for millennia, growing vertically upwards as the bog grows. However, adjacent areas on the bog (< 10 m distant) show switches between microform type over time, indicating a lack of persistence. 5. Synthesis. We suggest that the acrotelm-catotelm model should be used cautiously; spatial variations in peatland permeability do not fit the simple patterns suggested by the model. To understand how peatlands as a whole function both hydrologically and ecologically it is necessary to understand how patterns of peat physical properties and peatland vegetation develop and persist
The effects of climatic fluctuations and extreme events on running water ecosystems
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
Noise auto-correlation spectroscopy with coherent Raman scattering
Ultrafast lasers have become one of the most powerful tools in coherent
nonlinear optical spectroscopy. Short pulses enable direct observation of fast
molecular dynamics, whereas broad spectral bandwidth offers ways of controlling
nonlinear optical processes by means of quantum interferences. Special care is
usually taken to preserve the coherence of laser pulses as it determines the
accuracy of a spectroscopic measurement. Here we present a new approach to
coherent Raman spectroscopy based on deliberately introduced noise, which
increases the spectral resolution, robustness and efficiency. We probe laser
induced molecular vibrations using a broadband laser pulse with intentionally
randomized amplitude and phase. The vibrational resonances result in and are
identified through the appearance of intensity correlations in the noisy
spectrum of coherently scattered photons. Spectral resolution is neither
limited by the pulse bandwidth, nor sensitive to the quality of the temporal
and spectral profile of the pulses. This is particularly attractive for the
applications in microscopy, biological imaging and remote sensing, where
dispersion and scattering properties of the medium often undermine the
applicability of ultrafast lasers. The proposed method combines the efficiency
and resolution of a coherent process with the robustness of incoherent light.
As we demonstrate here, it can be implemented by simply destroying the
coherence of a laser pulse, and without any elaborate temporal scanning or
spectral shaping commonly required by the frequency-resolved spectroscopic
methods with ultrashort pulses.Comment: To appear in Nature Physic
Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium <i>Pectobacterium carotovorum</i> carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of <i>Pectobacterium carotovorum</i> and <i>Pectobacterium atrosepticum</i> with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that <i>Pectobacterium spp.</i> carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of <i>Pectobacterium carotovorum</i> and <i>atrosepticum</i> that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells
A novel fluorescent imaging technique for assessment of cerebral vasospasm after experimental subarachnoid hemorrhage
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
- …
