15 research outputs found

    Variation in Mycobacterium bovis genetic richness suggests that inwards cattle movements are a more important source of infection in beef herds than in dairy herds

    Get PDF
    Publication history: Accepted - 25 June 2019; Published online - July 2019Background We used genetic Multi-Locus VNTR Analysis (MLVA) data gathered from surveillance efforts to better understand the ongoing bovine tuberculosis (bTB) epidemic in Northern Irish cattle herds. We modelled the factors associated with Mycobacterium bovis MLVA genotype richness at three analytical scales; breakdown level, herd level, and patch level, and compared the results between dairy and non-dairy production types. Results In 83% of breakdowns and in 63% of herds, a single MLVA genotype was isolated. Five or more MLVA genotypes were found in less than 3 % of herds. Herd size and the total number of reactors were important explanatory variables, suggesting that increasing MLVA genotype richness was positively related to increases in the number of host animals. Despite their smaller relative size, however, the highest MLVA genotype richness values were observed in non-dairy herds. Increasing inwards cattle movements were important positive predictors of MLVA genotype richness, but mainly in non-dairy settings. Conclusions The principal finding is that low MLVA genotype richness indicates that small-scale epidemics, e.g. wildlife, contiguous farms, and within-herd recrudescence, are important routes of M. bovis infection in cattle herds. We hypothesise that these mechanisms will maintain, but may not explicitly increase, MLVA genotype richness. The presence of elevated MLVA richness is relatively rare and likely indicates beef fattening enterprises, which purchase cattle from over long distances. Cattle movements were furthermore an important predictor of MLVA genotype richness in non-dairy herds, but not in dairy herds; this may represent reduced cattle purchasing levels in dairy enterprises, compared to beef. These observations allude to the relative contribution of different routes of bTB infection between production types; we posit that infection associated with local factors may be more evident in dairy herds than beef herds, however in beef herds, inwards movements offer additional opportunities for introducing M. bovis into the herd

    European badger (Meles meles) responses to low-intensity, selective culling: using mark recapture and relatedness data to assess social perturbation

    Get PDF
    Publication history: Accepted - 20 June 2022; Published online - 28 July 2022Culling the main wildlife host of bovine tuberculosis in Great Britain (GB) and Ireland, the European badger (Meles meles), has been employed in both territories to reduce infections in cattle. In GB, this has been controversial, with results suggesting that culling induces disturbance to badger social structure, facilitating wider disease dissemination. Previous analyses hypothesized that even very low-level, selective culling may cause similar deleterious effects by increasing ranging of individuals and greater mixing between social groups. To assess this hypothesis, a novel, prospective, landscape-scale ‘before-and-after’ Test and Vaccinate or Remove (TVR) study was implemented. Test-positive badgers were culled and test-negative badgers were Bacillus Calmette–Guérin (BCG) vaccinated and released. Mark–recapture metrics of badger ranging and genetic metrics of social group relatedness did not change significantly over the study period. However, selective culling was associated with a localized reduction in social group relatedness in culled groups. Ecological context is important; extrapolation across territories and other disease epidemiological systems (epi-systems) is likely to be challenging. However, we demonstrate that small-scale, selective removal of test-positive badgers was not associated with metrics of increased ranging but was associated with localized changes in social group relatedness. This adds to the evidence base on badger control options for policy makers.Department of Agriculture, Environment and Rural Affairs (DAERA) N

    Development and validation of a targeted gene sequencing panel for application to disparate cancers

    Get PDF
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Quantifying land fragmentation in Northern Ireland Cattle Enterprises

    No full text
    Publication history: Accepted - 2 March 2022; Published online - 9 March 2022Farmland fragmentation is considered to be a defining feature of Northern Ireland’s (NI) agricultural landscape, influencing agricultural efficiency, productivity, and the spread of livestock diseases. Despite this, the full extent of farmland fragmentation in cattle farms in NI is not well understood, and little is known of how farmland fragmentation either influences, or is influenced by, different animal production types. Here, we describe and quantify farmland fragmentation in cattle farms for all of NI, using GIS processing of land parcel data to associate individual parcels with data on the cattle business associated with the land. We found that 35% of farms consisted of five or more fragments, with dairy farms associated with greater levels of farmland fragmentation, fragment dispersal and contact with contiguous neighbours compared to other production types. The elevated levels of farmland fragmentation in dairy production compared to non-dairy, may be associated with the recent expansion of dairy farms by land acquisition, following the abolition of the milk quota system in 2015. The comparatively high levels of farmland fragmentation observed in NI cattle farms may also have important implications for agricultural productivity and epidemiology alike. Whilst highly connected pastures could facilitate the dissemination of disease, highly fragmented land could also hamper productivity via diseconomies of scale, such as preventing the increase of herd sizes or additionally, adding to farm costs by increasing the complexity of herd management.This work was supported by the Department of Agriculture, Environment and Rural Affairs (DAERA), and was fully funded under grant 18/3/02 (48258)-FaRTHEr: Fragmentation As a Risk factor for TB in cattle Herds: impacts on Eradication

    Development and validation of a targeted gene sequencing panel for application to disparate cancers

    Get PDF
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy
    corecore