18 research outputs found
Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O_3 reaction, with the goal of better understanding the fates of the C_1 and C_4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C_1 stabilized Criegee (CH_2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C_4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH_2OO + H_2O (k_((H_2O)) ∼ 1 × 10^(−15) cm^3 molec^(−1) s^(−1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H_2O_2, and 21% formic acid + H_2O; and CH_2OO + (H_2O)_2 (k_((H_2O)_2) ∼ 1 × 10^(−12) cm^3 molec^(−1) s^(−1)) yields 40% HMHP, 6% formaldehyde + H_2O_2, and 54% formic acid + H_2O. Competitive rate determinations (k_(SO_2/k(H_2O)n=1,2) ∼ 2.2 (±0.3) × 10^4) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO_2] ∼ 10 ppb). The importance of the CH_2OO + (H_2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH_2OO does not substantially affect the lifetime of SO_2 or HCOOH in the Southeast US, e.g., CH_2OO + SO_2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant
Statistical Outliers and Dragon-Kings as Bose-Condensed Droplets
A theory of exceptional extreme events, characterized by their abnormal sizes
compared with the rest of the distribution, is presented. Such outliers, called
"dragon-kings", have been reported in the distribution of financial drawdowns,
city-size distributions (e.g., Paris in France and London in the UK), in
material failure, epileptic seizure intensities, and other systems. Within our
theory, the large outliers are interpreted as droplets of Bose-Einstein
condensate: the appearance of outliers is a natural consequence of the
occurrence of Bose-Einstein condensation controlled by the relative degree of
attraction, or utility, of the largest entities. For large populations, Zipf's
law is recovered (except for the dragon-king outliers). The theory thus
provides a parsimonious description of the possible coexistence of a power law
distribution of event sizes (Zipf's law) and dragon-king outliers.Comment: Latex file, 16 pages, 1 figur
Investigation of wheel loading based on adhesion theories and temperature
Wheel loading is one of the main factors limiting the capability of the grinding wheel. It results in an increase in grinding forces and temperature. As a consequence, the rate of abrasive wea
Fossil isopod and decapod crustaceans from the Kowai formation (pliocene) near Makikihi, South Canterbury, New Zealand
Small concretions and specimens embedded in the matrix have yielded a new Pliocene crustacean fauna from the Kowai Formation near Makikihi, South Canterbury, New Zealand. The fauna is relatively robust, with five identifiable taxa. Three new species are named herein, including the isopod Cirolana makikihi and the decapods Upogebia kowai and Austrohelice manneringi. One new genus and species of decapod, Kowaicarcinus maxwellae, is also named. The fauna documents the second occurrences of fossil isopod and upogebiid from New Zealand. The fauna is indicative of a nearshore setting with some mixing with taxa from shallow, offshore, normal marine settings