253 research outputs found

    Deep Learning for Predicting Congestive Heart Failure

    Get PDF
    Congestive heart failure (CHF) is one of the most debilitating cardiac disorders. It is a costly disease in terms of both lives and financial outlays, given the high rate of hospital re-admissions and mortality. Heart failure (HF) is notoriously difficult to identify on time, and is frequently accompanied by additional comorbidities that further complicate diagnosis. Many decision support systems (DSS) have been developed to facilitate diagnosis and to raise the standard of screening and monitoring operations, even for non-expert staff. This is confirmed in the literature by records of highly performing diagnosis-aid systems, which are unfortunately not very relevant to expert cardiologists. In order to assist cardiologists in predicting the trajectory of HF, we propose a deep learning-based system which predicts severity of disease progression by employing medical patient history. We tested the accuracy of four models on a labeled dataset, composed of 1037 records, to predict CHF severity and progression, achieving results comparable to studies based on much larger datasets, none of which used longitudinal multi-class prediction. The main contribution of this work is that it demonstrates that a fairly complicated approach can achieve good results on a medium size dataset, providing a reasonably accurate means of determining the evolution of CHF well in advance. This potentially constitutes a significant aid for healthcare managers and expert cardiologists in designing different therapies for medication, healthy lifestyle changes and quality of life (QoL) management, while also promoting allocation of resources with an evidence-based approach. © 2022 by the authors

    Adaptive optics in high-contrast imaging

    Full text link
    The development of adaptive optics (AO) played a major role in modern astronomy over the last three decades. By compensating for the atmospheric turbulence, these systems enable to reach the diffraction limit on large telescopes. In this review, we will focus on high contrast applications of adaptive optics, namely, imaging the close vicinity of bright stellar objects and revealing regions otherwise hidden within the turbulent halo of the atmosphere to look for objects with a contrast ratio lower than 10^-4 with respect to the central star. Such high-contrast AO-corrected observations have led to fundamental results in our current understanding of planetary formation and evolution as well as stellar evolution. AO systems equipped three generations of instruments, from the first pioneering experiments in the nineties, to the first wave of instruments on 8m-class telescopes in the years 2000, and finally to the extreme AO systems that have recently started operations. Along with high-contrast techniques, AO enables to reveal the circumstellar environment: massive protoplanetary disks featuring spiral arms, gaps or other asymmetries hinting at on-going planet formation, young giant planets shining in thermal emission, or tenuous debris disks and micron-sized dust leftover from collisions in massive asteroid-belt analogs. After introducing the science case and technical requirements, we will review the architecture of standard and extreme AO systems, before presenting a few selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure

    Variable dynamics in the inner disk of HD 135344B revealed with multi-epoch scattered light imaging

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.MB acknowledges funding from ANR of France under contract number ANR-16-CE31-0013 (Planet Forming Disks). SP acknowledges support from CONICYTGemini grant 32130007. SK acknowledges support from an STFC Rutherford fellowship (ST/J004030/1) and an ERC Starting Grant (Grant Agreement No. 639889)

    Australian University Nursing and Allied Health Students’ and Staff Physical Activity Promotion Preparedness and Knowledge: A Pre-Post Study Using an Educational Intervention

    Get PDF
    The promotion of physical activity (PA) by health professionals is a key strategy to increase PA levels in the population. In this study, we investigated PA promotion, preparedness, and knowledge among university nursing and allied health students and staff, as well as PA resource usage within curricula, before and after an educational intervention. Students and staff from 13 health disciplines at one Australian university were invited to complete an online survey, and a curriculum audits were conducted before and after PA teaching resources were promoted by academic PA champions (n = 14). A total of 299 students and 43 staff responded to the survey pre-intervention, and 363 and 32 responded to the post-intervention, respectively. PA promotion role perception (≥93%) and confidence to provide general PA advice (≥70%) were high throughout the study. Knowledge of PA guidelines was poor (3–10%). Students of physiotherapy, sport and exercise science, as well as more active students, were more likely to be aware of the PA guidelines (p < 0.05). Over 12 months, PA promotion preparedness and knowledge did not change significantly, nor was there a change in the amount of PA content delivered, despite a significant increase in the use of the teaching resources across a number of disciplines (p = 0.007). Future research should be carried out to investigate the implementation of the resources over time and to develop additional strategies for PA promotion and education scaffolded across curricula

    An inner warp discovered in the disk around HD 110058 using VLT/SPHERE and HST/STIS

    Full text link
    An edge-on debris disk was detected in 2015 around the young, nearby A0V star HD 110058. The disk showed features resembling those seen in the disk of beta Pictoris that could indicate the presence of a perturbing planetary-mass companion in the system. We investigated new and archival scattered light images of the disk in order to characterise its morphology and spectrum. In particular, we analysed the disk's warp to constrain the properties of possible planetary perturbers. Our work uses data from two VLT/SPHERE observations and archival data from HST/STIS. We measured the morphology of the disk by analysing vertical profiles along the length of the disk to extract the centroid spine position and vertical height. We extracted the surface brightness and reflectance spectrum of the disk. We detect the disk between 20 au (with SPHERE) and 150 au (with STIS), at a position angle of 159.6±^\circ\pm0.6^\circ. Analysis of the spine shows an asymmetry between the two sides of the disk, with a 3.4±^\circ\pm0.9^\circ warp between ~20 au and 60 au. The disk is marginally vertically resolved in scattered light, with a vertical aspect ratio of 9.3±\pm0.7% at 45 au. The extracted reflectance spectrum is featureless, flat between 0.95 micron and 1.1 micron, and red from 1.1 micron to 1.65 micron. The outer parts of the disk are also asymmetric with a tilt between the two sides compatible with a disk made of forward-scattering particles and seen not perfectly edge-on, suggesting an inclination of <84^\circ. The presence of an undetected planetary-mass companion on an inclined orbit with respect to the disk could explain the warp. The misalignment of the inner parts of the disk with respect to the outer disk suggests a warp that has not yet propagated to the outer parts of the disk, favouring the scenario of an inner perturber as the origin of the warp.Comment: 17 pages, 15 figures, 3 tables; accepted for publication in A&

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    Get PDF
    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3)

    Debris Disk Color with the Hubble Space Telescope

    Full text link
    Multi-wavelength scattered light imaging of debris disks may inform dust properties including typical size and mineral composition. Existing studies have investigated a small set of individual systems across a variety of imaging instruments and filters, calling for uniform comparison studies to systematically investigate dust properties. We obtain the surface brightness of dust particles in debris disks by post-processing coronagraphic imaging observations, and compare the multi-wavelength reflectance of dust. For a sample of resolved debris disks, we perform a systematic analysis on the reflectance properties of their birth rings. We reduced the visible and near-infrared images of 23 debris disk systems hosted by A through M stars using two coronagraphs onboard the Hubble Space Telescope: the STIS instrument observations centering at 0.58 μ\mum, and the NICMOS instrument at 1.12 μ\mum or 1.60 μ\mum. For proper recovery of debris disks, we used classical reference differential imaging for STIS, and adopted non-negative matrix factorization with forward modeling for NICMOS. By dividing disk signals by stellar signals to take into account of intrinsic stellar color effects, we systematically obtained and compared the reflectance of debris birth rings at ~90 deg scattering angle. Debris birth rings typically exhibit a blue color at ~90 deg scattering angle. As the stellar luminosity increases, the color tends to be more neutral. A likely L-shaped color-albedo distribution indicates a clustering of scatterer properties. The observed color trend correlates with the expected blow-out size of dust particles. The color-albedo clustering likely suggests different populations of dust in these systems. More detailed radiative transfer models with realistic dust morphology will contribute to explaining the observed color and color-albedo distribution of debris systems.Comment: 17 pages, 8 figures, 3 tables. A&A accepte
    corecore