766 research outputs found
Spin Measurements in Cascade Decays at the LHC
We systematically study the possibility of determining the spin of new
particles after their discovery at the LHC. We concentrate on angular
correlations in cascade decays. Motivated by constraints of electroweak
precision tests and the potential of providing a Cold Dark Matter candidate, we
focus on scenarios of new physics in which some discrete symmetry guarantees
the existence of stable neutral particles which escape the detector. More
specifically, we compare supersymmetry with another generic scenario in which
new physics particles have the same spin as their Standard Model partners. A
survey of possibilities of observing spin correlations in a broad range of
decay channels is carried out, with interesting ones identified. Rather than
confining ourselves to one "collider friendly" benchmark point (such as SPS1a),
we describe the parameter region in which any particular decay channel is
effective. We conduct a more detailed study of chargino's spin determination in
the decay channel . A scan
over the chargino and neutralino masses is performed. We find that as long as
the spectrum is not too degenerate the prospects for spin determination in this
channel are rather good.Comment: 36 pages, references added, 1 figure modifie
Determining the Higgs Boson Self Coupling at Hadron Colliders
Inclusive Standard Model Higgs boson pair production at hadron colliders has
the capability to determine the Higgs boson self-coupling, lambda. We present a
detailed analysis of the gg\to HH\to (W^+W^-)(W^+W^-)\to
(jjl^\pm\nu)(jj{l'}^\pm\nu) and gg\to HH\to (W^+W^-)(W^+W^-)\to
(jjl^\pm\nu)({l'}^\pm\nu {l''}^\mp\nu) (l, {l'}, {l''}=e, \mu) signal channels,
and the relevant background processes, for the CERN Large Hadron Collider, and
a future Very Large Hadron Collider operating at a center-of-mass energy of 200
TeV. We also derive quantitative sensitivity limits for lambda. We find that it
should be possible at the LHC with design luminosity to establish that the
Standard Model Higgs boson has a non-zero self-coupling and that lambda /
lambda_{SM} can be restricted to a range of 0-3.8 at 95% confidence level (CL)
if its mass is between 150 and 200 GeV. At a 200 TeV collider with an
integrated luminosity of 300 fb^{-1}, lambda can be determined with an accuracy
of 8 - 25% at 95% CL in the same mass range.Comment: 28 pages, Revtex3, 9 figures, 3 table
A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions
We present a solid-state laser system that generates 750 mW of
continuous-wave single-frequency output at 313 nm. Sum-frequency generation
with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This
visible light is then converted to UV by cavity-enhanced second-harmonic
generation. The laser output can be tuned over a 495 GHz range, which includes
the 9Be+ laser cooling and repumping transitions. This is the first report of a
narrow-linewidth laser system with sufficient power to perform fault-tolerant
quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman
transitions.Comment: 9 pages, 4 figure
Associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider
We investigate the viability of observing charged Higgs bosons (H^+/-)
produced in association with W bosons at the CERN Large Hadron Collider, using
the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different
scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real
and complex parameters. Performing a parton level study we show how the
irreducible Standard Model background from W+2 jets can be controlled by
applying appropriate cuts and find that the size of a possible signal depends
on the cuts needed to suppress QCD backgrounds and misidentifications. In the
standard maximal mixing scenario of the MSSM we find a viable signal for large
tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts
whereas for more pessimistic ones we only find a viable signal for very large
tan(beta) (>~50). We have also investigated a special class of MSSM scenarios
with large mass-splittings among the heavy Higgs bosons where the cross-section
can be resonantly enhanced by factors up to one hundred, with a strong
dependence on the CP-violating phases. Even so we find that the signal after
cuts remains small except for small masses (~< m_t) with optimistic cuts.
Finally, in all the scenarios we have investigated we have only found small
CP-asymmetries.Comment: 28 pages, 12 figures, version to appear in Euro. Phys. J.
Extended WKB method, resonances and supersymmetric radial barriers
Semiclassical approximations are implemented in the calculation of position
and width of low energy resonances for radial barriers. The numerical
integrations are delimited by t/T<<8, with t the period of a classical particle
in the barrier trap and T the resonance lifetime. These energies are used in
the construction of `haired' short range potentials as the supersymmetric
partners of a given radial barrier. The new potentials could be useful in the
study of the transient phenomena which give rise to the Moshinsky's diffraction
in time.Comment: 12 pages, 4 figures, 3 table
Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis
We investigate inclusive Standard Model Higgs boson pair production at lepton
and hadron colliders for Higgs boson masses in the range 120 GeV < m_H < 200
GeV. For m_H < 140 GeV we find that hadron colliders have a very limited
capability to determine the Higgs boson self-coupling, \lambda, due to an
overwhelming background. We also find that, in this mass range, supersymmetric
Higgs boson pairs may be observable at the LHC, but a measurement of the self
coupling will not be possible. For m_H > 140 GeV we examine ZHH and HH nu
bar-nu production at a future e+e- linear collider with center of mass energy
in the range of sqrt{s}=0.5 - 1 TeV, and find that this is likely to be equally
difficult. Combining our results with those of previous literature, which has
demonstrated the capability of hadron and lepton machines to determine \lambda
in either the high or the low mass regions, we establish a very strong
complementarity of these machines.Comment: Revtex, 25 pages, 2 tables, 10 figure
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT
model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are
constrained to be universal at some input scale, , above the GUT scale,
. We analyze the parameter space of CFSU(5) assuming that the lightest
supersymmetric particle (LSP) provides the cosmological cold dark matter,
paying careful attention to the matching of parameters at the GUT scale. We
first display some specific examples of the evolutions of the SSB parameters
that exhibit some generic features. Specifically, we note that the relationship
between the masses of the lightest neutralino and the lighter stau is sensitive
to , as is the relationship between the neutralino mass and the masses
of the heavier Higgs bosons. For these reasons, prominent features in generic
planes such as coannihilation strips and rapid-annihilation
funnels are also sensitive to , as we illustrate for several cases with
tan(beta)=10 and 55. However, these features do not necessarily disappear at
large , unlike the case in the minimal conventional SU(5) GUT. Our
results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos,
version to appear in EPJ
Future Directions in Parity Violation: From Quarks to the Cosmos
I discuss the prospects for future studies of parity-violating (PV)
interactions at low energies and the insights they might provide about open
questions in the Standard Model as well as physics that lies beyond it. I cover
four types of parity-violating observables: PV electron scattering; PV hadronic
interactions; PV correlations in weak decays; and searches for the permanent
electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions,
Milos, Greece (May, 2006); 10 page
What if Supersymmetry Breaking Unifies beyond the GUT Scale?
We study models in which soft supersymmetry-breaking parameters of the MSSM
become universal at some unification scale, , above the GUT scale,
\mgut. We assume that the scalar masses and gaugino masses have common
values, and respectively, at . We use the
renormalization-group equations of the minimal supersymmetric SU(5) GUT to
evaluate their evolutions down to \mgut, studying their dependences on the
unknown parameters of the SU(5) superpotential. After displaying some generic
examples of the evolutions of the soft supersymmetry-breaking parameters, we
discuss the effects on physical sparticle masses in some specific examples. We
note, for example, that near-degeneracy between the lightest neutralino and the
lighter stau is progressively disfavoured as increases. This has the
consequence, as we show in planes for several different values
of , that the stau coannihilation region shrinks as
increases, and we delineate the regions of the plane
where it is absent altogether. Moreover, as increases, the focus-point
region recedes to larger values of for any fixed and
. We conclude that the regions of the plane that are
commonly favoured in phenomenological analyses tend to disappear at large
.Comment: 24 pages with 11 eps figures; references added, some figures
corrected, discussion extended and figure added; version to appear in EPJ
Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1
On the basis of frequentist analyses of experimental constraints from
electroweak precision data, g-2, B physics and cosmological data, we
investigate the parameters of the constrained MSSM (CMSSM) with universal soft
supersymmetry-breaking mass parameters, and a model with common non-universal
Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of
supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu
and the spin-independent dark matter scattering cross section. In the CMSSM we
find preferences for sparticle masses that are relatively light. In the NUHM1
the best-fit values for many sparticle masses are even slightly smaller, but
with greater uncertainties. The likelihood functions for most sparticle masses
are cut off sharply at small masses, in particular by the LEP Higgs mass
constraint. Both in the CMSSM and the NUHM1, the coannihilation region is
favoured over the focus-point region at about the 3-sigma level, largely but
not exclusively because of g-2. Many sparticle masses are highly correlated in
both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are
accessible to early LHC running. Some slepton and chargino/neutralino masses
should be in reach at the ILC. The masses of the heavier Higgs bosons should be
accessible at the LHC and the ILC in portions of the preferred regions in the
(M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is
peaked close to the Standard Model value, but much larger values are possible
in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are
preferred in both the CMSSM and the NUHM1. We study the effects of dropping the
g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure
- …