8,182 research outputs found
Improved precision with Hologic Apex software.
UnlabelledThe precision of Hologic Apex v2.0 analysis software is significantly improved from Hologic Delphi v11.2 software and is comparable to GE Lunar Prodigy v7.5 software. Apex and Delphi precisions were, respectively, 1.0% vs. 1.2% (L1-L4 spine), 1.l % vs. 1.3% (total femur), 1.6% vs. 1.9% (femoral neck), and 0.7% vs. 0.9% (dual total femur).IntroductionPrecision of bone mineral density (BMD) measurements by dual-energy X-ray absorptiometry (DXA) is known to vary by manufacturer, model, and technologist. This study evaluated the precision of three analysis versions: Apex v2.0 and Delphi v11.2 (Hologic, Inc.), and Prodigy v7.5 (GE Healthcare, Inc.) independent of technologist skill.MethodsDuplicate spine and dual hip scans on 90 women were acquired on both Delphi and Prodigy DXA systems at three clinics. BMD measures were converted to standardized BMD (sBMD) units. Precision errors were described as a root-mean-square (RMS) standard deviations and RMS percent coefficients of variation across the population.ResultsApex and Delphi values were highly correlated (r ranged from 0.90 to 0.99). Excluding the right neck, the Apex precision error was found to be 20% to 25% lower than the Delphi (spine: 1.0% versus 1.2% (p < 0.05), total hip: 1.1% versus 1.3% (p < 0.05), right neck: 2.3% versus 2.6% (p > 0.1)). No statistically significant differences were found in the precision error of the Apex and Prodigy (p > 0.05) except for the right neck (2.3% versus 1.8% respectively, p = 0.03).ConclusionThe Apex software has significantly lower precision error compared to Delphi software with similar mean values, and similar precision to that of the Prodigy
Maximum performance of piezoelectric energy harvesters when coupled to interface circuits
This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator
Pistons modeled by potentials
In this article we consider a piston modelled by a potential in the presence
of extra dimensions. We analyze the functional determinant and the Casimir
effect for this configuration. In order to compute the determinant and Casimir
force we employ the zeta function scheme. Essentially, the computation reduces
to the analysis of the zeta function associated with a scalar field living on
an interval in a background potential. Although, as a model for a
piston, it seems reasonable to assume a potential having compact support within
, we provide a formalism that can be applied to any sufficiently smooth
potential.Comment: 10 pages, LaTeX. A typo in eq. (3.5) has been corrected. In
"Cosmology, Quantum Vacuum and Zeta Functions: In Honour of Emilio Elizalde",
Eds. S.D. Odintsov, D. Saez-Gomez, and S. Xambo-Descamps. (Springer 2011) pp
31
A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV
A comprehensive set of 4He(g,n) absolute cross-section measurements has been
performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were
directed toward a liquid 4He target, and neutrons were identified using
pulse-shape discrimination and the Time-of-flight Technique in two
liquid-scintillator detector arrays. Seven-point angular distributions have
been measured for fourteen photon energies. The results have been subjected to
complementary Transition-coefficient and Legendre-coefficient analyses. The
results are also compared to experimental data measured at comparable photon
energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group
Method, and Effective Interaction Hyperspherical-Harmonic Expansion
calculations. For photon energies below 29 MeV, the angle-integrated data are
significantly larger than the values recommended by Calarco, Berman, and
Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical
Review
Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization
Large-amplitude molecular motions which occur during isomerization can cause
significant changes in electronic structure. These variations in electronic
properties can be used to identify vibrationally-excited eigenstates which are
localized along the potential energy surface. This work demonstrates that
nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of
progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC
chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate
that the hyperfine interaction is extremely sensitive to the chemical bonding
of the quadrupolar 14N nucleus and can therefore be used to determine in which
potential well the vibrational wavefunction is localized. A natural bonding
orbital analysis along the isomerization path further demonstrates that
hyperfine interactions arise from the asphericity of the electron density at
the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole
coupling constants of highly-excited vibrational states are computed from a
one-dimensional internal coordinate path Hamiltonian. The excellent agreement
between ab initio calculations and recent measurements demonstrates that
nuclear quadrupole hyperfine structure can be used as a diagnostic tool for
characterizing localized HCN and HNC vibrational states.Comment: Accepted by Physical Chemistry Chemical Physic
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Prenatal origin of childhood AML occurs less frequently than in childhood ALL
Background While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. Methods We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. Results In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. Conclusion In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases
Does inter-vertebral range of motion increase after spinal manipulation? A prospective cohort study.
Background: Spinal manipulation for nonspecific neck pain is thought to work in part by improving inter-vertebral range of motion (IV-RoM), but it is difficult to measure this or determine whether it is related to clinical outcomes.
Objectives: This study undertook to determine whether cervical spine flexion and extension IV-RoM increases after a course of spinal manipulation, to explore relationships between any IV-RoM increases and clinical outcomes and to compare palpation with objective measurement in the detection of hypo-mobile segments.
Method: Thirty patients with nonspecific neck pain and 30 healthy controls matched for age and gender received quantitative fluoroscopy (QF) screenings to measure flexion and extension IV-RoM (C1-C6) at baseline and 4-week follow-up between September 2012-13. Patients received up to 12 neck manipulations and completed NRS, NDI
and Euroqol 5D-5L at baseline, plus PGIC and satisfaction questionnaires at follow-up. IV-RoM accuracy, repeatability and hypo-mobility cut-offs were determined. Minimal detectable changes (MDC) over 4 weeks were calculated
from controls. Patients and control IV-RoMs were compared at baseline as well as changes in patients over 4 weeks. Correlations between outcomes and the number of manipulations received and the agreement (Kappa) between palpated and QF-detected of hypo-mobile segments were calculated.
Results: QF had high accuracy (worst RMS error 0.5o) and repeatability (highest SEM 1.1o, lowest ICC 0.90) for
IV-RoM measurement. Hypo-mobility cut offs ranged from 0.8o to 3.5o. No outcome was significantly correlated with increased IV-RoM above MDC and there was no significant difference between the number of hypo-mobile segments in patients and controls at baseline or significant increases in IV-RoMs in patients. However, there was a modest and significant correlation between the number of manipulations received and the number of levels and directions whose IV-RoM increased beyond MDC (Rho=0.39, p=0.043). There was also no agreement between palpation and QF in identifying hypo-mobile segments (Kappa 0.04-0.06).
Conclusions: This study found no differences in cervical sagittal IV-RoM between patients with non-specific neck pain and matched controls. There was a modest dose-response relationship between the number of manipulations given and number of levels increasing IV-RoM - providing evidence that neck manipulation has a mechanical effect at segmental levels. However, patient-reported outcomes were not related to this
Terminal valuations, growth rates and the implied cost of capital
This article is published with open access at Springerlink.comWe develop a model based on the notion that prices lead earnings,
allowing for a simultaneous estimation of the implied growth rate and the cost of
equity capital for US industrial sectors. The major difference between our approach
and that in prior literature is that ours avoids the necessity to make assumptions
about terminal values and consequently about future growth rates. In fact, growth
rates are an endogenous variable, which is estimated simultaneously with the
implied cost of equity capital. Since we require only 1-year-ahead forecasts of
earnings and no assumptions about dividend payouts, our methodology allows us to
estimate ex ante aggregate growth and risk premia over a larger sample of firms than
has previously been possible. Our estimate of the risk premium being between 3.1
and 3.9 % is at the lower end of recent estimates, reflecting the inclusion of these
short-lived companies. Our estimate of the long run growth is from 4.2 to 4.7 %
Eosinophil and T Cell Markers Predict Functional Decline in COPD Patients
BACKGROUND. The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. METHODS. Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. RESULTS AND DISCUSSION. Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). CONCLUSION. These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.National Heart, Lung, and Blood Institute (NO1-HR-96140, NO1-HR-96141-001, NO1-HR-96144, NO1-HR-96143; NO1-HR-96145; NO1-HR-96142, R01HL086936-03); The Flight Attendant Medical Research Institute; the Jo-Ann F. LeBuhn Center for Chest Diseas
- …
