142,844 research outputs found

    The Angular Momenta of Neutron Stars and Black Holes as a Window on Supernovae

    Full text link
    It is now clear that a subset of supernovae display evidence for jets and are observed as gamma-ray bursts. The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion, and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin-down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets, and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are imbued with high spin initially, and rapidly spun-down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.Comment: ApJ Letters, accepte

    Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system

    Get PDF
    A singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type with given boundary conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These singular perturbation parameters are assumed to be distinct. The components of the solution exhibit overlapping layers. Shishkin piecewise-uniform meshes are introduced, which are used in conjunction with a classical finite difference discretisation, to construct a numerical method for solving this problem. It is proved that the numerical approximations obtained with this method is essentially second order convergent uniformly with respect to all of the parameters

    Gravitational Radiation from Black Hole Binaries in Globular Clusters

    Get PDF
    A populations of stellar mass black hole binaries may exist in globular clusters. The dynamics of globular cluster evolution imply that there may be at most one black hole binary is a globular cluster. The population of binaries are expected to have orbital periods greater than a few hours and to have a thermal distribution of eccentricities. In the LISA band, the gravitational wave signal from these binaries will consist of several of the higher harmonics of the orbital frequency. A Monte Carlo simulation of the galactic globular cluster system indicates that LISA will detect binaries in 10 % of the clusters with an angular resolution sufficient to identify the host cluster of the binary.Comment: 7 pages, 2 eps figures, uses iopart styl

    Quantum wires from coupled InAs/GaAs strained quantum dots

    Full text link
    The electronic structure of an infinite 1D array of vertically coupled InAs/GaAs strained quantum dots is calculated using an eight-band strain-dependent k-dot-p Hamiltonian. The coupled dots form a unique quantum wire structure in which the miniband widths and effective masses are controlled by the distance between the islands, d. The miniband structure is calculated as a function of d, and it is shown that for d>4 nm the miniband is narrower than the optical phonon energy, while the gap between the first and second minibands is greater than the optical phonon energy. This leads to decreased optical phonon scattering, providing improved quantum wire behavior at high temperatures. These miniband properties are also ideal for Bloch oscillation.Comment: 5 pages revtex, epsf, 8 postscript figure

    Transmission Oscillator Ultrasonic Spectrometer (TOUS): A new research instrument

    Get PDF
    TOUS is capable for measuring very small changes in acoustic attenuation and phase velocity. Its high sensitivity to small changes in ultrasonic absorption results in part from operation under marginal conditions. In spite of high sensitivity, TOUS system is relatively simple, inexpensive, and compact

    X-ray emission from the Ultramassive Black Hole candidate NGC1277: implications and speculation on its origin

    Full text link
    We study the X-ray emission from NGC1277, a galaxy in the core of the Perseus cluster, for which van den Bosch et al. have recently claimed the presence of an UltraMassive Black Hole (UMBH) of mass 1.7 times 10^10 Msun, unless the IMF of the stars in the stellar bulge is extremely bottom heavy. The X-rays originate in a power-law component of luminosity 1.3 times 10^40 erg/s embedded in a 1 keV thermal minicorona which has a half-light radius of about 360 pc, typical of many early-type galaxies in rich clusters of galaxies. If Bondi accretion operated onto the UMBH from the minicorona with a radiative efficiency of 10 per cent, then the object would appear as a quasar with luminosity 10^46 erg/s, a factor of almost 10^6 times higher than observed. The accretion flow must be highly radiatively inefficient, similar to past results on M87 and NGC3115. The UMBH in NGC1277 is definitely not undergoing any significant growth at the present epoch. We note that there are 3 UMBH candidates in the Perseus cluster and that the inferred present mean mass density in UMBH could be 10^5 Msun/Mpc^3, which is 20 to 30 per cent of the estimated mean mass density of all black holes. We speculate on the implied growth of UMBH and their hosts, and discuss the possibiity that extreme AGN feedback could make all UMBH host galaxies have low stellar masses at redshifts around 3. Only those which end up at the centres of groups and clusters later accrete large stellar envelopes and become Brightest Cluster Galaxies. NGC1277 and the other Perseus core UMBH, NGC1270, have not however been able to gather more stars or gas owing to their rapid orbital motion in the cluster core.Comment: 5 pages, 4 figures, MNRAS in pres

    Giant Antiferromagnetically Coupled Moments in a Molecule-Based Magnet with Interpenetrating Lattices

    Full text link
    The molecule-based magnet [Ru2_2(O2_2CMe)4_4]3_3[Cr(CN)6_6] contains two weakly-coupled, interpenetrating sublattices in a body-centered cubic structure. Although the field-dependent magnetization indicates a metamagnetic transition from an antiferromagnet to a paramagnet, the hysteresis loop also exhibits a substantial magnetic remanance and coercive field uncharacteristic of a typical metamagnet. We demonstrate that this material behaves like two giant moments with a weak antiferromagnetic coupling and a large energy barrier between the orientations of each moment. Because the sublattice moments only weakly depend on field in the transition region, the magnetic correlation length can be directly estimated from the magnetization.Comment: 3 figure

    Identifying the Higgs Spin and Parity in Decays to Z Pairs

    Get PDF
    Higgs decays to Z boson pairs may be exploited to determine spin and parity of the Higgs boson, a method complementary to spin-parity measurements in Higgs-strahlung. For a Higgs mass above the on-shell ZZ decay threshold, a model-independent analysis can be performed, but only by making use of additional angular correlation effects in gluon-gluon fusion at the LHC and gamma-gamma fusion at linear colliders. In the intermediate mass range, in which the Higgs boson decays into pairs of real and virtual Z bosons, threshold effects and angular correlations, parallel to Higgs-strahlung, may be adopted to determine spin and parity, though high event rates will be required for the analysis in practice.Comment: 14 pages, 2 postscript figure

    Automatic-repeat-request error control schemes

    Get PDF
    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed
    • …
    corecore