1,294 research outputs found
Simulation-efficient marginal posterior estimation with <i>swyft</i>:Stop wasting your precious time
Sequential simulation-based inference for gravitational wave signals
The current and upcoming generations of gravitational wave experiments represent an exciting step forward in terms of detector sensitivity and performance. For example, key upgrades at the LIGO, Virgo and KAGRA facilities will see the next observing run (O4) probe a spatial volume around four times larger than the previous run (O3), and design implementations for, e.g., the Einstein Telescope, Cosmic Explorer, and LISA experiments are taking shape to explore a wider frequency range and probe cosmic distances. In this context, however, a number of very real data analysis problems face the gravitational wave community. For example, it will be critical to develop tools and strategies to analyze (among other scenarios) signals that arrive coincidentally in detectors, longer signals that are in the presence of nonstationary noise or other shorter transients, as well as noisy, potentially correlated, coherent stochastic backgrounds. With these challenges in mind, we develop peregrine, a new sequential simulation-based inference approach designed to study broad classes of gravitational wave signal. In this work, we describe the method and implementation, before demonstrating its accuracy and robustness through direct comparison with established likelihood-based methods. Specifically, we show that we are able to fully reconstruct the posterior distributions for every parameter of a spinning, precessing compact binary coalescence using one of the most physically detailed and computationally expensive waveform approximants (SEOBNRv4PHM). Crucially, we are able to do this using only 2% of the waveform evaluations that are required in, e.g., nested sampling approaches. Finally, we provide some outlook as to how this level of simulation efficiency and flexibility in the statistical analysis could allow peregrine to tackle these current and future gravitational wave data analysis problems
Invariant mass distributions in cascade decays
We derive analytical expressions for the shape of the invariant mass
distributions of massless Standard Model endproducts in cascade decays
involving massive New Physics (NP) particles, D -> Cc -> Bbc -> Aabc, where the
final NP particle A in the cascade is unobserved and where two of the particles
a, b, c may be indistinguishable. Knowledge of these expressions can improve
the determination of NP parameters at the LHC. The shape formulas are
composite, but contain nothing more complicated than logarithms of simple
expressions. We study the effects of cuts, final state radiation and detector
effects on the distributions through Monte Carlo simulations, using a
supersymmetric model as an example. We also consider how one can deal with the
width of NP particles and with combinatorics from the misidentification of
final state particles. The possible mismeasurements of NP masses through `feet'
in the distributions are discussed. Finally, we demonstrate how the effects of
different spin configurations can be included in the distributions.Comment: 39 pages, 14 figures (colour), JHEP clas
Measurement of the Gluino Mass via Cascade Decays for SPS 1a
If R-parity conserving supersymmetry is realised with masses below the TeV
scale, sparticles will be produced and decay in cascades at the LHC. In the
case of a neutral LSP, which will not be detected, decay chains cannot be fully
reconstructed, complicating the mass determination of the new particles. In
this paper we extend the method of obtaining masses from kinematical endpoints
to include a gluino at the head of a five-sparticle decay chain. This
represents a non-trivial extension of the corresponding method for the squark
decay chain. We calculate the endpoints of the new distributions and assess
their applicability by examining the theoretical distributions for a variety of
mass scenarios. The precision with which the gluino mass can be determined by
this method is investigated for the mSUGRA point SPS 1a. Finally we estimate
the improvement obtained from adding a Linear Collider measurement of the LSP
mass.Comment: 40 pages; extended discussion of error
Anatomy of nuclear shape transition in the relativistic mean field theory
A detailed microscopic study of the temperature dependence of the shapes of
some rare-earth nuclei is made in the relativistic mean field theory. Analyses
of the thermal evolution of the single-particle orbitals and their occupancies
leading to the collapse of the deformation are presented. The role of the
non-linear field on the shape transition in different nuclei is also
investigated; in its absence the shape transition is found to be sharper.Comment: REVTEX file (13pages), 12 figures, Phys. Rev. C(in press),
\documentstyle[aps,preprint]{revtex
Using Subsystem MT2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders
We propose to use the MT2 concept to measure the masses of all particles in
SUSY-like events with two unobservable, identical particles. To this end we
generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which
can be applied to various subsystem topologies, as well as the full event
topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a
function of the unknown test mass Mc of the final particle in the subchain and
the transverse momentum pT due to radiation from the initial state. We show
that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different
types of kinks and discuss the origin of each type. We prove that the subsystem
MT2(n,p,c) variables by themselves already yield a sufficient number of
measurements for a complete determination of the mass spectrum (including the
overall mass scale). As an illustration, we consider the simple case of a decay
chain with up to three heavy particles, X2 -> X1 -> X0, which is rather
problematic for all other mass measurement methods. We propose three different
MT2-based methods, each of which allows a complete determination of the masses
of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint
measurements at a single fixed value of the test mass Mc. In the second method
the unknown mass spectrum is fitted to one or more endpoint functions
MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining
MT2 endpoints with measurements of kinematic edges in invariant mass
distributions. As a practical application of our methods, we show that the
dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent
determination of the masses of the top quark, the W boson and the neutrino,
without any prior assumptions.Comment: 47 pages, 9 figures. revised version, published in JHEP. Major
addition: a new appendix with the complete set of formulas for the MT2
endpoints as functions of the upstream transverse momentum pT and test mass
M
Gravitino Dark Matter Scenarios with Massive Metastable Charged Sparticles at the LHC
We investigate the measurement of supersymmetric particle masses at the LHC
in gravitino dark matter (GDM) scenarios where the next-to-lightest
supersymmetric partner (NLSP) is the lighter scalar tau, or stau, and is stable
on the scale of a detector. Such a massive metastable charged sparticle would
have distinctive Time-of-Flight (ToF) and energy-loss () signatures. We
summarise the documented accuracies expected to be achievable with the ATLAS
detector in measurements of the stau mass and its momentum at the LHC. We then
use a fast simulation of an LHC detector to demonstrate techniques for
reconstructing the cascade decays of supersymmetric particles in GDM scenarios,
using a parameterisation of the detector response to staus, taus and jets based
on full simulation results. Supersymmetric pair-production events are selected
with high redundancy and efficiency, and many valuable measurements can be made
starting from stau tracks in the detector. We recalibrate the momenta of taus
using transverse-momentum balance, and use kinematic cuts to select
combinations of staus, taus, jets and leptons that exhibit peaks in invariant
masses that correspond to various heavier sparticle species, with errors often
comparable with the jet energy scale uncertainty.Comment: 23 pages, 10 figures, updated to version published in JHE
Discovery and Measurement of Sleptons, Binos, and Winos with a Z'
Extensions of the MSSM could significantly alter its phenomenology at the
LHC. We study the case in which the MSSM is extended by an additional U(1)
gauge symmetry, which is spontaneously broken at a few TeV. The production
cross-section of sleptons is enhanced over that of the MSSM by the process
, so the discovery potential for
sleptons is greatly increased. The flavor and charge information in the
resulting decay, , provides a useful handle on
the identity of the LSP. With the help of the additional kinematical constraint
of an on-shell Z', we implement a novel method to measure all of the
superpartner masses involved in this channel. For certain final states with two
invisible particles, one can construct kinematic observables bounded above by
parent particle masses. We demonstrate how output from one such observable,
m_T2, can become input to a second, increasing the number of measurements one
can make with a single decay chain. The method presented here represents a new
class of observables which could have a much wider range of applicability.Comment: 20 pages, 15 figures; v2 references added and minor change
- âŠ