77 research outputs found

    Direct aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans

    Get PDF
    Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large number of beamlets. The computer adjusts the intensities of these beamlets according to the required planning dose objectives. The optimized intensity patterns are then decomposed into a series of deliverable multi leaf collimator (MLC) shapes in the sequencing step

    Pain patterns and descriptions in patients with radicular pain: Does the pain necessarily follow a specific dermatome?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is commonly stated that nerve root pain should be expected to follow a specific dermatome and that this information is useful to make the diagnosis of radiculopathy. There is little evidence in the literature that confirms or denies this statement. The purpose of this study is to describe and discuss the diagnostic utility of the distribution of pain in patients with cervical and lumbar radicular pain.</p> <p>Methods</p> <p>Pain drawings and descriptions were assessed in consecutive patients diagnosed with cervical or lumbar nerve root pain. These findings were compared with accepted dermatome maps to determine whether they tended to follow along the involved nerve root's dermatome.</p> <p>Results</p> <p>Two hundred twenty-six nerve roots in 169 patients were assessed. Overall, pain related to cervical nerve roots was non-dermatomal in over two-thirds (69.7%) of cases. In the lumbar spine, the pain was non-dermatomal in just under two-thirds (64.1%) of cases. The majority of nerve root levels involved non-dermatomal pain patterns except C4 (60.0% dermatomal) and S1 (64.9% dermatomal). The sensitivity (SE) and specificity (SP) for dermatomal pattern of pain are low for all nerve root levels with the exception of the C4 level (Se 0.60, Sp 0.72) and S1 level (Se 0.65, Sp 0.80), although in the case of the C4 level, the number of subjects was small (n = 5).</p> <p>Conclusion</p> <p>In most cases nerve root pain should not be expected to follow along a specific dermatome, and a dermatomal distribution of pain is not a useful historical factor in the diagnosis of radicular pain. The possible exception to this is the S1 nerve root, in which the pain does commonly follow the S1 dermatome.</p

    Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials

    Get PDF
    Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic `blue phase' host, particles should template into colloidal crystals with potential uses in photonics, metamaterials, and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol, but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.Comment: Manuscript with 3 figures plus supporting text and figure
    corecore