170 research outputs found

    Mitochondrial variation in Anopheles gambiae and Anopheles coluzzii: phylogeographic legacy and mitonuclear associations with metabolic resistance to pathogens and insecticides

    Get PDF
    Mitochondrial DNA has been a popular marker in phylogeography, phylogeny, and molecular ecology, but its complex evolution is increasingly recognized. Here, we investigated mitochondrial DNA variation in Anopheles gambiae and Anopheles coluzzii, in relation to other species in the Anopheles gambiae complex, by assembling the mitogenomes of 1,219 mosquitoes across Africa. The mitochondrial DNA phylogeny of the Anopheles gambiae complex was consistent with previously reported highly reticulated evolutionary history, revealing important discordances with the species tree. The three most widespread species (An. gambiae, An. coluzzii, and Anopheles arabiensis), known for extensive historical introgression, could not be discriminated based on mitogenomes. Furthermore, a monophyletic clustering of the three saltwater-tolerant species (Anopheles merus, Anopheles melas, and Anopheles bwambae) in the Anopheles gambiae complex also suggested that introgression and possibly selection shaped mitochondrial DNA evolution. Mitochondrial DNA variation in An. gambiae and An. coluzzii across Africa revealed significant partitioning among populations and species. A peculiar mitochondrial DNA lineage found predominantly in An. coluzzii and in the hybrid taxon of the African “far-west” exhibited divergence comparable to the interspecies divergence in the Anopheles gambiae complex, with a geographic distribution matching closely An. coluzzii's geographic range. This phylogeographic relict of the An. coluzzii and An. gambiae split was associated with population and species structure, but not with the rare Wolbachia occurrence. The lineage was significantly associated with single nucleotide polymorphisms in the nuclear genome, particularly in genes associated with pathogen and insecticide resistance. These findings underline potential mitonuclear coevolution history and the role played by mitochondria in shaping metabolic responses to pathogens and insecticides in Anopheles

    Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation

    Full text link
    The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-β\beta configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered both surface and body waves are able to propagate. When the perpendicular wave number is larger than a certain value, the body kink mode becomes a surface wave. In addition, a sausage surface mode is found below the internal cut-off frequency. When non-uniformity in the equilibrium is included, surface and body modes are damped due to resonant absorption. In this paper, first, a normal-mode analysis is performed and the period, the damping rate, and the spatial structure of eigenfunctions are obtained. Then, the time-dependent problem is solved, and the conditions under which one or the other type of mode is excited are investigated.Comment: 19 pages, 9 figures, accepted for publication in Solar Physic

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Search for chargino-neutralino production in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present the results of a search for associated production of the chargino and neutralino supersymmetric particles using up to 1.1 fb-1 of integrated luminosity collected by the CDF II experiment at the Tevatron ppbar collider at a center-of-mass energy of 1.96 TeV. The search is conducted by analyzing events with a large transverse momentum imbalance and either three charged leptons or two charged leptons of the same electric charge. The numbers of observed events are found to be consistent with standard model expectations. Upper limits on the production cross section are derived in different theoretical models. In one of these models a lower limit on the mass of the chargino is set at 129 GeV/c^2 at the 95% confidence level.Comment: To be submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode

    Get PDF
    We report a measurement of the ttbar production cross section using the CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311 pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events selected with six or more hadronic jets with additional kinematic requirements. At least one of these jets must be identified as a b-quark jet by the reconstruction of a secondary vertex. The cross section is measured to be sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is consistent with the standard model prediction.Comment: By CDF collaboratio
    corecore