322 research outputs found

    Voluntary sustainability standards could significantly reduce detrimental impacts of global agriculture

    Get PDF
    Voluntary sustainability standards (VSS) are stakeholder-derived principles with measurable and enforceable criteria to promote sustainable production outcomes. While institutional commitments to use VSS to meet sustainable procurement policies have grown rapidly over the past decade, we still have relatively little understanding of the (i) direct environmental benefits of large-scale VSS adoption; (ii) potential perverse indirect impacts of adoption; and (iii) implementation pathways. Here, we illustrate and address these knowledge gaps using an ecosystem service modeling and scenario analysis of Bonsucro, the leading VSS for sugarcane. We find that global compliance with the Bonsucro environmental standards would reduce current sugarcane production area (−24%), net tonnage (−11%), irrigation water use (−65%), nutrient loading (−34%), and greenhouse gas emissions from cultivation (−51%). Under a scenario of doubled global sugarcane production, Bonsucro adoption would further limit water use and greenhouse gas emissions by preventing sugarcane expansion into water-stressed and high-carbon stock ecosystems. This outcome was achieved via expansion largely on existing agricultural lands. However, displacement of other crops could drive detrimental impacts from indirect land use. We find that over half of the potential direct environmental benefits of Bonsucro standards under the doubling scenario could be achieved by targeting adoption in just 10% of global sugarcane production areas. However, designing policy that generates the most environmentally beneficial Bonsucro adoption pathway requires a better understanding of the economic and social costs of VSS adoption. Finally, we suggest research directions to advance sustainable consumption and production

    Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Get PDF
    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality

    Impact of Using Unedited CT-Based DIR-Propagated Autocontours on Online ART for Pancreatic SBRT

    Get PDF
    PURPOSE: To determine the dosimetric impact of using unedited autocontours in daily plan adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiotherapy using tumor tracking. MATERIALS AND METHODS: The study included 98 daily CT scans of 35 LAPC patients. All scans were manually contoured (MAN), and included the PTV and main organs-at-risk (OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration (DIR) methods followed by contour propagation were used to generate autocontour sets on the daily CT scans. Autocontours remained unedited, and were compared to MAN on the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR were used to generate daily plans using the VOLO™ optimizer, and were compared to non-adapted plans. Resulting planned doses were compared based on PTV coverage and OAR dose-constraints. RESULTS: Overall, both algorithms reported a high agreement between unclipped MAN and autocontours, but showed worse results when being evaluated on the clipped structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64% and 56% of replans. CONCLUSION: For the majority of fractions, manual correction of autocontours could be avoided or be limited to the region closest to the PTV. This practice could further reduce the overall timings of adaptive radiotherapy workflows for patients with LAPC

    Technical feasibility of online adaptive stereotactic treatments in the abdomen on a robotic radiosurgery system

    Get PDF
    BACKGROUND AND PURPOSE: Stereotactic body radiotherapy (SBRT) has been proven to be beneficial for several disease sites in the (lower) abdomen. However, the quality of the treatment plan, based on a single planning computed tomography (CT), can be compromised due to large inter-fraction motion of the target and organs at risk (OARs) in this anatomical region. The aim of this study was to investigate the feasibility of online adaptive SBRT treatments on a robotic radiosurgery system and to record estimated total treatment times. MATERIALS AND METHODS: For two disease sites, locally advanced pancreatic cancer (LAPC) and oligometastatic lymph nodes, four patients with repeat CTs were included in the feasibility study. Quick treatment plan templates were generated based on the planning CT and validated by running them on the plan and fraction CTs. For two cases a dummy run was performed and the individual steps were timed. Dose delivery was the largest contributor to the total treatment time, followed by contour adaptation. RESULTS: Running the quick plan templates resulted in plans similar to unrestricted plans, obeying the OAR constraints. The dummy runs showed that online adaptive treatments were completed in 64 to 83 min respectively for oligometastases and LAPC, comparable to other clinically available solutions. CONCLUSIONS: This study showed the feasibility of online re-planning for two challenging disease sites within a clinically acceptable time frame on a robotic radiosurgery system, making use of commercially available elements that are not integrated by the vendor

    A field expansions method for scattering by periodic multilayered media

    Get PDF
    The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a wide range of problems of scientific and technological interest. This contribution focuses upon the robust and high-order numerical simulation of a model for the interaction of pressure waves generated within the earth incident upon layers of sediment near the surface. Herein described is a boundary perturbation method for the numerical simulation of scattering returns from irregularly shaped periodic layered media. The method requires only the discretization of the layer interfaces (so that the number of unknowns is an order of magnitude smaller than finite difference and finite element simulations), while it avoids not only the need for specialized quadrature rules but also the dense linear systems characteristic of boundary integral/element methods. The approach is a generalization to multiple layers of Bruno and Reitich’s “Method of Field Expansions” for dielectric structures with two layers. By simply considering the entire structure simultaneously, rather than solving in individual layers separately, the full field can be recovered in time proportional to the number of interfaces. As with the original field expansions method, this approach is extremely efficient and spectrally accurate

    Suppression of quantum oscillations and the dependence on site energies in electronic excitation transfer in the Fenna-Matthews-Olson trimer

    Full text link
    Energy transfer in the photosynthetic complex of the Green Sulfur Bacteria known as the Fenna-Matthews-Olson (FMO) complex is studied theoretically taking all three subunits (monomers) of the FMO trimer and the recently found eighth bacteriochlorophyll (BChl) molecule into account. We find that in all considered cases there is very little transfer between the monomers. Since it is believed that the eighth BChl is located near the main light harvesting antenna we look at the differences in transfer between the situation when BChl 8 is initially excited and the usually considered case when BChl 1 or 6 is initially excited. We find strong differences in the transfer dynamics, both qualitatively and quantitatively. When the excited state dynamics is initialized at site eight of the FMO complex, we see a slow exponential-like decay of the excitation. This is in contrast to the oscillations and a relatively fast transfer that occurs when only seven sites or initialization at sites 1 and 6 is considered. Additionally we show that differences in the values of the electronic transition energies found in the literature lead to a large difference in the transfer dynamics

    First Observation of the Rare Decay Mode K-long -> e+ e-

    Full text link
    In an experiment designed to search for and study very rare two-body decay modes of the K-long, we have observed four examples of the decay K-long -> e+ e-, where the expected background is 0.17+-0.10 events. This observation translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12}, consistent with recent theoretical predictions. This result represents by far the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure
    corecore