40 research outputs found

    Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry

    Get PDF
    Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker-defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings

    Puddle formation, persistent gaps, and non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+{\delta}

    Full text link
    The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but it was often thought that the superconductivity at sufficiently high doping is governed by conventional mean-field Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show that the number of paired electrons (the superfluid density) vanishes when the transition temperature Tc goes to zero[2], in contradiction to expectation from BCS theory. The origin of this anomalous vanishing is unknown. Our scanning tunneling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+{\delta} high-temperature superconductor show that it is due to the emergence of puddled superconductivity, featuring nanoscale superconducting islands in a metallic matrix[3,4]. Our measurements further reveal that this puddling is driven by gap filling, while the gap itself persists beyond the breakdown of superconductivity. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair-breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory

    Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS

    Get PDF
    We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance

    The impact of heat treatment of bovine milk on gastric emptying and nutrient appearance in peripheral circulation in healthy females: a randomized controlled trial comparing pasteurized and ultra-high temperature milk

    Get PDF
    Background: Heat treatments of dairy, including pasteurization and ultra-high temperature (UHT) processing, alter milk macromolecular structures, and ultimately affect digestion. In vitro, animal, and human studies show faster nutrient release or circulating appearance after consuming UHT milk (UHT-M) compared with pasteurized milk (PAST-M), with a faster gastric emptying (GE) rate proposed as a possible mechanism. Objectives: To investigate the impact of milk heat treatment on GE as a mechanism of faster nutrient appearance in blood. We hypothesized that GE and circulating nutrient delivery following consumption would be faster for UHT-M than PAST-M. Methods: In this double-blind randomized controlled cross-over trial, healthy female (n = 20; 27.3 ± 1.4 y, mean ± SD) habitual dairy consumers, consumed 500 mL of either homogenized bovine UHT-M or PAST-M (1340 compared with 1320 kJ). Gastric content volume (GCV) emptying half-time (T50) was assessed over 3 h by magnetic resonance imaging subjective digestive symptoms, plasma amino acid, lipid and B vitamin concentrations, and gastric myoelectrical activity were measured over 5 h. Results: Although GCV T50 did not differ (102 ± 7 min compared with 89 ± 8 min, mean ± SEM, UHT-M and PAST-M, respectively; P = 0.051), GCV time to emptying 25% of the volume was 31% longer following UHT-M compared with PAST-M (42 ± 2 compared with 32 ± 4 min, P = 0.004). Although GCV remained larger for a longer duration following UHT-M (treatment × time interaction, P = 0.002), plasma essential amino acid AUC was greater following UHT-M than PAST-M (55,324 ± 3809 compared with 36,598 ± 5673 μmol·min·L-1, P = 0.006). Heat treatment did not impact gastric myoelectrical activity, plasma appetite hormone markers or subjective appetite scores. Conclusions: Contrary to expectations, GE was slower with UHT-M, yet, as anticipated, aminoacidemia was greater. The larger GCV following UHT-M suggests that gastric volume may poorly predict circulating nutrient appearance from complex food matrices. Dairy heat treatment may be an effective tool to modify nutrient release by impacting digestion kinetics. Clinical Trial Registry: www.anzctr.org.au (ACTRN12620000172909)

    Re-Imagining School Feeding : A High-Return Investment in Human Capital and Local Economies

    Get PDF
    Analysis shows that a quality education, combined with a guaranteed package of health and nutrition interventions at school, such as school feeding, can contribute to child and adolescent development and build human capital. School feeding programs can help get children into school and help them stay there, increasing enrollment and reducing absenteeism. Once children are in the classroom, these programs can contribute to their learning by avoiding hunger and enhancing cognitive abilities. The benefits are especially great for the poorest and most disadvantaged children. As highlighted in the World Bank’s 2018 World Development Report (World Bank 2018), countries need to prioritize learning, not just schooling. Children must be healthy, not hungry, if they are to match learning opportunities with the ability to learn. In the most vulnerable communities, nutrition-sensitive school meals can offer children a regular source of nutrients that are essential for their mental and physical development. And for the growing number of countries with a “double burden” of undernutrition and emerging obesity problems, well-designed school meals can help set children on the path toward more healthy diets. In Latin America, for example, where there is a growing burden of noncommunicable diseases (NCDs), school feeding programs are a key intervention in reducing undernutrition and promoting healthy diet choices. Mexico’s experience reducing sugary beverages in school cafeterias, for example, was found to be beneficial in advancing a healthy lifestyle. A large trial of school-based interventions in China also found that nutritional or physical activity interventions alone are not as effective as a joint program that combines nutritional and educational interventions. In poor communities, economic benefits from school feeding programs are also evident—reducing poverty by boosting income for households and communities as a whole. For families, the value of meals in school is equivalent to about 10 percent of a household’s income. For families with several children, that can mean substantial savings. As a result, school feeding programs are often part of social safety nets in poor countries, and they can be a stable way to reliably target pro-poor investments into communities, as well as a system that can be scaled up rapidly to respond to crises. There are also direct economic benefits for smallholder farmers in the community. Buying local food creates stable markets, boosting local agriculture, impacting rural transformation, and strengthening local food systems. In Brazil, for example, 30 percent of all purchases for school feeding come from smallholder agriculture (Drake and others 2016). These farmers are oftentimes parents with schoolchildren, helping them break intergenerational cycles of hunger and poverty. Notably, benefits to households and communities offer important synergies. The economic growth in poor communities helps provide stability and better-quality education and health systems that promote human capital. At the same time, children and adolescents grow up to enjoy better employment and social opportunities as their communities grow

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore