13 research outputs found

    Identification of a small molecule with activity against drug-resistant and persistent tuberculosis

    Get PDF
    A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-beta-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents

    DprE1-from the Discovery to the Promising Tuberculosis Drug Target

    No full text
    Several groups working in the field of the development of new antituberculosis drugs have recently reported active compounds targeting mycobacterial enzyme DprE1. Along with its counterpart, DprE2, it catalyses a unique epimerization reaction resulting in the synthesis of decaprenylphosphoryl arabinose, the single donor of arabinosyl residues for the build-up of arabinans, fundamental components of the mycobacterial cell wall. This review presents the historical background leading to the discovery of DprE1, focusing on the biochemical and structural characterization of this important emerging target and introducing the molecules acting on DprE1 including the development of the most successful series - the benzothiazinones, currently in late pre-clinical development, which turned to be suicide inhibitors of DprE1

    Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria

    No full text
    International audienceMycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smeg-matis PimA, an essential enzyme responsible for the initial man-nosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltrans-ferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic sur-factants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, cal-orimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential anti-mycobacterial compounds

    GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis

    No full text
    Mycobacterium tuberculosis possesses a thick and highly hydrophobic cell wall principally composed of a mycolyl-arabinogalactan-peptidoglycan complex, which is critical for survival and virulence. DprE1 is a well-characterized component of decaprenyl-phospho-ribose epimerase, which produces decaprenyl-phospho-arabinose (DPA) for the biosynthesis of mycobacterial arabinans. Upstream of dprE1 lies rv3789, which encodes a short transmembrane protein of the GtrA family, whose members are often involved in the synthesis of cell surface polysaccharides. We demonstrate that rv3789 and dprE1 are cotranscribed from a common transcription start site situated 64 bp upstream of rv3789. Topology mapping revealed four transmembrane domains in Rv3789 and a cytoplasmic C terminus consistent with structural models built using analysis of sequence coevolution. To investigate its role, we generated an unmarked rv3789 deletion mutant in M. tuberculosis. The mutant was characterized by impaired growth and abnormal cell morphology, since the cells were shorter and more swollen than wild-type cells. This phenotype likely stems from the decreased incorporation of arabinan into arabinogalactan and was accompanied by an accumulation of DPA. A role for Rv3789 in arabinan biosynthesis was further supported by its interaction with the priming arabinosyltransferase AftA, as demonstrated by a two-hybrid approach. Taken together, the data suggest that Rv3789 does not act as a DPA flippase but, rather, recruits AftA for arabinogalactan biosynthesis. IMPORTANCE Upstream of the essential dprE1 gene, encoding a key enzyme of the decaprenyl phospho-arabinose (DPA) pathway, lies rv3789, coding for a short transmembrane protein of unknown function. In this study, we demonstrated that rv3789 and dprE1 are cotranscribed from a common transcription start site located 64 bp upstream of rv3789 in M. tuberculosis. Furthermore, the deletion of rv3789 led to a reduction in arabinan content and to an accumulation of DPA, confirming that Rv3789 plays a role in arabinan biosynthesis. Topology mapping, structural modeling, and protein interaction studies suggest that Rv3789 acts as an anchor protein recruiting AftA, the first arabinosyl transferase. This investigation provides deeper insight into the mechanism of arabinan biosynthesis in mycobacteria

    Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043

    No full text
    Electron deficient nitroaromatic compounds such as BTZ043 and its closest congener, PBTZ169, and related agents are a promising new class of anti-TB compounds. Herein we report the design and syntheses of 1,3-benzothiazinone azide (BTZ-N-3) and related click chemistry products based on the molecular mode of activation of BTZ043. Our computational docking studies indicate that BTZ-N-3 binds in the essentially same pocket as that of BTZ043. Detailed biochemical studies with cell envelope enzyme fractions of Mycobacterium smegmatis combined with our model biochemical reactivity studies with nucleophiles indicated that, in contrast to BTZ043, the azide analogue may have a different mode of activation for anti-TB activity. Subsequent enzymatic studies with recombinant DprE1 from Mtb followed by MIC determination in NTB1 strain of Mtb (harboring Cys387Ser mutation in DprEl and is BTZ043 resistant) unequivocally indicated that BTZ-N3 is an effective reversible and noncovalent inhibitor of DprEl

    DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization

    No full text
    The flavo-enzyme DprE1 catalyzes a key epimerization step in the decaprenyl-phosphoryl d-arabinose (DPA) pathway, which is essential for mycobacterial cell wall biogenesis and targeted by several new tuberculosis drug candidates. Here, using differential radiolabeling with DPA precursors and high-resolution fluorescence microscopy, we disclose the unexpected extracytoplasmic localization of DprE1 and periplasmic synthesis of DPA. Collectively, this explains the vulnerability of DprE1 and the remarkable potency of the best inhibitors

    The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis

    No full text
    8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-beta-D-ribose 2'-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 mu g/ml against M. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 mu M and present favorable in vitro absorption-distribution-metabolism-excretion/toxicity (ADME/T) and in vivo pharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency

    Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating Mycobacterium tuberculosis

    No full text
    Herein, we report the discovery and structure activity relationships of 5-substituted-2-[(3,5-dinitrobenzyl)-sulfanyl]-1,3,4-oxadiazoles and 1,3,4-thiadiazoles as a new class of antituberculosis agents. The majority of these compounds exhibited outstanding in vitro activity against Mycobacterium tuberculosis CNCTC My 331/88 and six multidrug-resistant clinically isolated strains of M. tuberculosis, with minimum inhibitory concentration values as low as 0.03 mu M (0.011-0.026 mu g/mL). The investigated compounds had a highly selective antimycobacterial effect because they showed no activity against the other bacteria or fungi tested in this study. Furthermore, the investigated compounds exhibited low in vitro toxicities in four proliferating mammalian cell lines and in isolated primary human hepatocytes. Several in vitro genotoxicity assays indicated that the selected compounds have no mutagenic activity. The oxadiazole and thiadiazole derivatives with the most favorable activity/toxicity profiles also showed potency comparable to that of rifampicin against the nonreplicating streptomycin-starved M. tuberculosis 18b-Lux strain, and therefore, these derivatives, are of particular interest

    Lead selection and characterization of antitubercular compounds using the Nested Chemical Library

    No full text
    Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved
    corecore