3 research outputs found

    Translation Representations and Scattering By Two Intervals

    Get PDF
    Studying unitary one-parameter groups in Hilbert space (U(t),H), we show that a model for obstacle scattering can be built, up to unitary equivalence, with the use of translation representations for L2-functions in the complement of two finite and disjoint intervals. The model encompasses a family of systems (U (t), H). For each, we obtain a detailed spectral representation, and we compute the scattering operator, and scattering matrix. We illustrate our results in the Lax-Phillips model where (U (t), H) represents an acoustic wave equation in an exterior domain; and in quantum tunneling for dynamics of quantum states

    Spectral Theory for Perturbed Krein Laplacians in Nonsmooth Domains

    Get PDF
    We study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian Δ+V-\Delta+V defined on C0(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set ΩRn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2. In particular, in the aforementioned context we establish the Weyl asymptotic formula #\{j\in\mathbb{N} | \lambda_{K,\Omega,j}\leq\lambda\} = (2\pi)^{-n} v_n |\Omega| \lambda^{n/2}+O\big(\lambda^{(n-(1/2))/2}\big) {as} \lambda\to\infty, where vn=πn/2/Γ((n/2)+1)v_n=\pi^{n/2}/ \Gamma((n/2)+1) denotes the volume of the unit ball in Rn\mathbb{R}^n, and λK,Ω,j\lambda_{K,\Omega,j}, jNj\in\mathbb{N}, are the non-zero eigenvalues of HK,ΩH_{K,\Omega}, listed in increasing order according to their multiplicities. We prove this formula by showing that the perturbed Krein Laplacian (i.e., the Krein--von Neumann extension of Δ+V-\Delta+V defined on C0(Ω)C^\infty_0(\Omega)) is spectrally equivalent to the buckling of a clamped plate problem, and using an abstract result of Kozlov from the mid 1980's. Our work builds on that of Grubb in the early 1980's, who has considered similar issues for elliptic operators in smooth domains, and shows that the question posed by Alonso and Simon in 1980 pertaining to the validity of the above Weyl asymptotic formula continues to have an affirmative answer in this nonsmooth setting.Comment: 60 page
    corecore