284 research outputs found
Is this for real?:The role of advanced placebo technology when using Transcranial Magnetic Stimulation in clinical practice
This thesis offers a comprehensive exploration of repetitive Transcranial Magnetic Stimulation (rTMS) as a potential treatment avenue for neuropsychiatric disorders, encompassing depression, nicotine addiction, epilepsy, and Parkinson's disease. Through a double-blind randomized study, a retrospective study, and case reports, this research highlights rTMS' effectiveness, considering placebo effects and alternative therapies like ketamine treatment. Notably, a study on smoking cessation demonstrates aiTBS's efficacy in reducing cigarette consumption and cravings, while investigations into TRD (treatment-resistant depression) reveal comparable benefits between rTMS and IM ketamine treatments. Case reports on epilepsy and Parkinson's disease showcase positive outcomes, emphasizing potential rTMS benefits in persistent neurological conditions. Addressing safety concerns, the thesis stresses careful patient selection and monitoring during rTMS. This comprehensive work advances understanding, advocating for rTMS as a valuable neuropsychiatric treatment, though further research is required for broader applications and improved patient outcomes
Tungsten and barium transport in the internal plasma of hollow cathodes
The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative
Mode Transitions in Magnetically Shielded Hall Effect Thrusters
A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development
2-D Magnetohydrodynamic Simulations of Induced Plasma Dynamics in the Near-Core Region of a Galaxy Cluster
We present results from numerical simulations of the cooling-core cluster
A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics
(MHD) code MACH2. In our simulations we explore the effect of anisotropic
thermal conduction on the energy balance of the system. The results from
idealized cases in 2-D axisymmetric geometry underscore the importance of the
initial plasma density in ICM simulations, especially the near-core values
since the radiation cooling rate is proportional to . Heat conduction
is found to be non-effective in preventing catastrophic cooling in this
cluster. In addition we performed 2-D planar MHD simulations starting from
initial conditions deliberately violating both thermal balance and hydrostatic
equilibrium in the ICM, to assess contributions of the convective terms in the
energy balance of the system against anisotropic thermal conduction. We find
that in this case work done by the pressure on the plasma can dominate the
early evolution of the internal energy over anisotropic thermal conduction in
the presence of subsonic flows, thereby reducing the impact of the magnetic
field. Deviations from hydrostatic equilibrium near the cluster core may be
associated with transient activity of a central active galactic nucleus and/or
remnant dynamical activity in the ICM and warrant further study in three
dimensions.Comment: 16 pages, 13 figures, accepted for publication in MNRA
High-Power Solar Electric Propulsion for Future NASA Missions
NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts
The effect of cathode geometry on barium transport in hollow cathode plasmas
The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba^+ ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe^+ ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice because the Xe plasma density peaks further upstream
Barium depletion in hollow cathode emitters
Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al_2O_3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values
Simulation of a Hall Effect Thruster with Krypton Propellant
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143098/1/6.2017-4633.pd
Metallic Wall Hall Thrusters
A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device
- …