148 research outputs found

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    Using camera motion to identify different types of American football plays

    Full text link
    This paper presents a method that uses camera motion parameters to recognise 7 types of American football plays. The approach is based on the motion information extracted from the video and it can identify short and long pass plays, short and long running plays, quarterback sacks, punt plays and kickoff plays. This method has the advantage that it is fast and it does not require player or ball tracking. The system was trained and tested using 782 plays and the results show that the system has an overall classification accuracy of 68%.<br /

    Dynamic Trace-Based Data Dependency Analysis for Parallelization of C Programs

    Get PDF
    Writing parallel code is traditionally considered a difficult task, even when it is tackled from the beginning of a project. In this paper, we demonstrate an innovative toolset that faces this challenge directly. It provides the software developers with profile data and directs them to possible top-level, pipeline-style parallelization opportunities for an arbitrary sequential C program. This approach is complementary to the methods based on static code analysis and automatic code rewriting and does not impose restrictions on the structure of the sequential code or the parallelization style, even though it is mostly aimed at coarse-grained task-level parallelization. The proposed toolset has been utilized to define parallel code organizations for a number of real-world representative applications and is based on and is provided as free source

    On the incremental learning and recognition of the pattern of movement of multiple labelled objects in dynamic scenes

    Full text link
    In this paper we discuss combining incremental learning and incremental recognition to classify patterns consisting of multiple objects, each represented by multiple spatio-temporal features. Importantly the technique allows for ambiguity in terms of the positions of the start and finish of the pattern. This involves a progressive classification which considers the data at each time instance in the query and thus provides a probable answer before all the query information becomes available. We present two methods that combine incremental learning and incremental recognition: a time instance method and an overall best match method.<br /

    Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    Get PDF
    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery

    On the automated interpretation and indexing of American football

    Full text link
    This work combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances

    SystemC Model Generation for Realistic Simulation of Networked Embedded Systems

    Get PDF
    Verification and design-space exploration of today's embedded systems require the simulation of heterogeneous aspects of the system, i.e., software, hardware, communications. This work shows the use of SystemC to simulate a model-driven specification of the behavior of a networked embedded system together with a complete network scenario consisting of the radio channel, the IEEE 802.15.4 protocol for wireless personal area networks and concurrent traffic sharing the medium. The paper describes the main issues addressed to generate SystemC modules from Matlab/Stateflow descriptions and to integrate them in a complete network scenario. Simulation results on a healthcare wireless sensor network show the validity of the approach

    Asynchronous Resilient Wireless Sensor Network for Train Integrity Monitoring

    Get PDF
    To increase railway use efficiency, the European Railway Traffic Management System (ERTMS) Level 3 requires all trains to constantly and reliably self-monitor and report their integrity and track position without infrastructure support. Timely train separation detection is challenging, especially for long freight trains without electrical power on cars. Data fusion of multiple monitoring techniques is currently investigated, including distributed integrity sensing of all train couplings. We propose a Wireless Sensor Network (WSN) topology, communication protocol, application, and sensor nodes prototypes designed for low power timely train integrity reporting in unreliable conditions, like intermittent node operation and network association (e.g., in low environmental energy harvesting conditions) and unreliable radio links. Each train coupling is redundantly monitored by four sensors, which can help to satisfy the Train Collision Avoidance System (TCAS) and European Committee for Electrotechnical Standardization (CENELEC) SIL 4 requirements and contribute to the reliability of the asynchronous network with low rejoin overhead. A control center on the locomotive controls the WSN and receives the reports, helping the integration in railway or Internet of Things (IoT) applications. Software simulations of the embedded application code virtually unchanged show that the energy-optimized configurations check a 50-car train integrity (about 1 km long) in 3.6 s average with 0.1 s standard deviation and that more than 95 % of the reports are delivered successfully with up to one-third of communications or up to 15 % of the nodes failed. We also report qualitative test results for a 20-node network in different experimental conditions

    Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs

    Get PDF
    Massive amounts of legacy sequential code need to be parallelized to make better use of modern multiprocessor architectures. Nevertheless, writing parallel programs is still a difficult task. Automated parallelization methods can be effective both at the statement and loop levels and, recently, at the task level, but they are still restricted to specific source code constructs or application domains. We present in this article an innovative toolset that supports developers when performing manual code analysis and parallelization decisions. It automatically collects and represents the program profile and data dependencies in an interactive graphical format that facilitates the analysis and discovery of manual parallelization opportunities. The toolset can be used for arbitrary sequential C programs and parallelization patterns. Also, its program-scope data dependency tracing at runtime can complement the tools based on static code analysis and can also benefit from it at the same time. We also tested the effectiveness of the toolset in terms of time to reach parallelization decisions and of their quality. We measured a significant improvement for several real-world representative applications

    Algorithm validation and hardware design interactive approach

    Get PDF
    In this paper we will describe a modality to speed up the design of the VLSI digital (mainly DSP) circuits and to reduce the design errors by increasing the interaction between the ad-hoc software program developed to validate the algorithm and the VHDL description and simulation. A real case of a digital power analyzer will be used for exemplificatio
    corecore