52 research outputs found

    ESTIMATING INCIDENT SOLAR RADIATION IN TROPICAL ISLANDS WITH SHORT TERM WEATHER DATA

    Get PDF
    Solar radiation incident on a particular location depends on geographical and meteorological factors and as such vary spatially as well as temporally. For any given solar radiation related application an accurate prediction of incident solar radiation is important. However due to high cost of measuring and recording, solar radiation data are confined generally to a few locations, for example in Sri Lanka it is confined only to the capital city, Colombo. As such, a correlation to predict incident solar radiation based on meteorological and geographical parameters will have to be identified and validated taking into account the climatic differences in tropical regions with localized variations. In addition, due to non-availability of accurate historical meteorological data, estimated percentage variations are identified which can be used to predict incident solar radiation at a given location when two broad climatic regions are defined

    A set of surrogate parameters to evaluate harvested roof runoff quality

    Get PDF
    This paper presents the outcomes of a research project, which focused on developing a set of surrogate parameters to evaluate roof runoff quality using simulated rainfall. Use of surrogate parameters to evaluate roof runoff quality has the potential to enhance the rapid generation of harvested rainwater quality data based on on-site measurements and thereby reduce resource intensive laboratory analysis. Pollutant buildup and washoff samples were collected from a model roof surface placed in a residential suburb in Gold Coast, Queensland State, Australia. The collected samples were tested for a range of physio-chemical parameters which are key indicators of nutrients, solids and organic matter. The analysis revealed that [total dissolved solids (TDS)]; [electrical conductivity (EC),turbidity (TTU)] as appropriate surrogate parameters for dissolved total nitrogen (DTN) and total solids (TS) respectively. No surrogate parameters were identified for phosphorus

    PREDICTING SOLAR RADIATION FOR TROPICAL ISLANDS FROM RAINFALL DATA

    Get PDF
    Abstract: There are many correlations developed to predict incident solar radiation at a given location developed based on geographical and meteorological parameters. However, all correlations depend on accurate measurement and availability of weather data such as sunshine duration, cloud cover, relative humidity, maximum and minimum temperatures etc, which essentially is a costly exercise in terms of equipment and labour. Sri Lanka being a tropical island of latitudinal change of only 30 along the length of the country, the meteorological factors govern the amount of incident radiation. Considering the cloud formation and wind patterns over Sri Lanka as well as the seasonal rainfall patterns, it can be observed that the mean number of rainy days can be used to predict the monthly average daily global radiation which can be used for calculations in solar related activities conveniently

    FACTORS AFFECTING THE SWELLING PRESSURE MEASURED BY THE OEDEMETER METHOD

    Get PDF
    ABSTRACT: Expansive soils are common in arid and semi-arid climate regions of the world and cause severe problems on civil engineering structures. The Swelling potential of the expansive soil mainly depends upon the properties of soil and environmental factors, and stress conditions. Swelling pressure is a key parameter used in designing structures in and on expansive soil. The swelling pressure of soil is measured in the laboratory using a representative soil samples. The size and the surface friction of the sample ring used in the swelling pressure test have effects on the measured swelling pressure and they have not properly been investigated. In this study, a series of constant volume swelling tests were conducted using an automated consolidation-swell apparatus to evaluate the effect of sample ring size, ring friction, initial dry density, and initial moisture content (IMC). Test results indicate an exponential growing trend of swelling pressure when the dry density is increased. Similarly, high swell pressures are achieved when the IMC is increased for the same dry density. A higher swelling pressure was measured when the friction of the specimen ring was reduced. The measured swelling pressure increases with increasing the height of the sampling ring and it decreases when the ring diameter is increased. Therefore, it is recommended to use a standard sample ring reducing inside wall friction using lubricants when measuring the swelling pressure in the laboratory. Further, the sample ring size, initial density and initial moisture content of soil should be given when reporting swelling pressure of soil

    Nutrients build-up and wash-off processes in urban land uses

    Get PDF
    This thesis describes outcomes of a research study conducted to investigate the nutrient build-up and wash-off processes on urban impervious surfaces. The data needed for the study was generated through a series of field investigations and laboratory test procedures. The study sites were selected in urbanised catchments to represent typical characteristics of residential, industrial and commercial land uses. The build-up and wash-off samples were collected from road surfaces in the selected study sites. A specially designed vacuum collection system and a rainfall simulator were used for sample collection. According to the data analysis, the solids build-up on road surfaces was significantly finer with more than 80% of the particles below 150 ìm for all the land uses. Nutrients were mostly associated with the particle size range below 150 ìm in both build-up and wash-off samples irrespective of type of land use. Therefore, the finer fraction of solids was the most important for the nutrient build-up and particulate nutrient wash-off processes. Consequently, the design of stormwater quality mitigation measures should target particles less than 150 ìm for the removal of nutrients irrespective of type of land use. Total kjeldahl nitrogen (TKN) was the most dominant form of nitrogen species in build-up on road surfaces. Phosphorus build-up on road surfaces was mainly in inorganic form and phosphate (PO4 3-) was the most dominant form. The nutrient wash-off process was found to be dependent on rainfall intensity and duration. Concentration of both total nitrogen and phosphorus was higher at the beginning of the rain event and decreased with the increase in rainfall duration. Consequently, in the design of stormwater quality mitigation strategies for nutrients removal, it is important to target the initial period of rain events. The variability of wash-off of nitrogen with rainfall intensity was significantly different to phosphorus wash-off. The concentration of nitrogen was higher in the wash-off for low intensity rain events compared to the wash-off for high intensity rain events. On the other hand, the concentration of phosphorus in the wash-off was high for high intensity rain events compared to low intensity rain events. Consequently, the nitrogen washoff can be defined as a source limiting process and phosphorus wash-off as a transport limiting process. This highlights the importance of taking into consideration the wash-off of low intensity rain events in the design of stormwater quality mitigation strategies targeting the nitrogen removal. All the nitrogen species in wash-off are primarily in dissolved form whereas phosphorus is in particulate form. The differences in the nitrogen and phosphorus wash-off processes is principally due to the degree of solubility, attachment to particulates, composition of total nitrogen and total phosphorus and the degree of adherence of the solids particles to the surface to which nutrients are attached. The particulate nitrogen available for wash-off is removed readily as these are mobilised as free solids particles on the surface. Phosphorus is washed-off mostly with the solids particles which are strongly adhered to the surface or as the fixed solids load. Investigation of the nitrogen wash-off process using bulk wash-off samples was in close agreement with the investigation of dissolved fraction of wash-off solids. This was primarily due to the predominant nature of dissolved nitrogen. However, the investigation of the processes which underpin phosphorus wash-off using bulk washoff samples could lead to loss of information. This is due to the composition of total phosphorus in wash-off solids and the inherent variability of the wash-off process for the different particle size ranges. This variability should preferably be taken into consideration as phosphorus wash-off is predominantly in particulate form. Therefore, care needs to be taken in the investigation of the phosphorus wash-off process using bulk wash-off samples to ensure that there is no loss of information and hence result in misleading outcomes. The investigation of different particle size ranges of wash-off solids is preferable in the interest of designing effective stormwater quality management strategies targeting phosphorus removal

    Pollutant characteristics on roof surfaces for evaluation as a stormwater harvesting catchment

    Get PDF
    This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction

    Understanding nutrient build-up on urban road surfaces

    Get PDF
    This paper discusses the outcomes of a research project on nutrients build-up on urban road surfaces. Nutrient build-up was investigated on road sites belonging to residential, industrial and commercial land use. Collected build-up samples were separated into five particle size ranges and were tested for total nitrogen (TN), total phosphorus (TP) and sub species of nutrients, namely, NO2-, NO3-, TKN and PO43-. Multivariate analytical techniques were used to analyse the data and to develop detailed understanding on build-up. Data analysis revealed that the solids loads on urban road surfaces are highly influenced by factors such as land use, antecedent dry period and traffic volume. However, the nutrient build-up process was found to be independent of the type of land use. It was solely dependent on the particle size of solids build-up. Most of the nutrients were associated with the particle size range <150 μm. Therefore, the removal of particles below 150 µm from road surfaces is of importance for the removal of nitrogen and phosphorus from road surface solids build-up. It is also important to consider the differences in the composition of nitrogen and phosphorus build-up in the context of designing effective stormwater quality mitigation strategies

    Determining a set of surrogate parameters to evaluate urban stormwater quality

    Get PDF
    This thesis details methodology to estimate urban stormwater quality based on a set of easy to measure physico-chemical parameters. These parameters can be used as surrogate parameters to estimate other key water quality parameters. The key pollutants considered in this study are nitrogen compounds, phosphorus compounds and solids. The use of surrogate parameter relationships to evaluate urban stormwater quality will reduce the cost of monitoring and so that scientists will have added capability to generate a large amount of data for more rigorous analysis of key urban stormwater quality processes, namely, pollutant build-up and wash-off. This in turn will assist in the development of more stringent stormwater quality mitigation strategies. The research methodology was based on a series of field investigations, laboratory testing and data analysis. Field investigations were conducted to collect pollutant build-up and wash-off samples from residential roads and roof surfaces. Past research has identified that these impervious surfaces are the primary pollutant sources to urban stormwater runoff. A specially designed vacuum system and rainfall simulator were used in the collection of pollutant build-up and wash-off samples. The collected samples were tested for a range of physico-chemical parameters. Data analysis was conducted using both univariate and multivariate data analysis techniques. Analysis of build-up samples showed that pollutant loads accumulated on road surfaces are higher compared to the pollutant loads on roof surfaces. Furthermore, it was found that the fraction of solids smaller than 150 ìm is the most polluted particle size fraction in solids build-up on both roads and roof surfaces. The analysis of wash-off data confirmed that the simulated wash-off process adopted for this research agrees well with the general understanding of the wash-off process on urban impervious surfaces. The observed pollutant concentrations in wash-off from road surfaces were different to pollutant concentrations in wash-off from roof surfaces. Therefore, firstly, the identification of surrogate parameters was undertaken separately for roads and roof surfaces. Secondly, a common set of surrogate parameter relationships were identified for both surfaces together to evaluate urban stormwater quality. Surrogate parameters were identified for nitrogen, phosphorus and solids separately. Electrical conductivity (EC), total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS) and turbidity (TTU) were selected as the relatively easy to measure parameters. Consequently, surrogate parameters for nitrogen and phosphorus were identified from the set of easy to measure parameters for both road surfaces and roof surfaces. Additionally, surrogate parameters for TSS, TDS and TS which are key indicators of solids were obtained from EC and TTU which can be direct field measurements. The regression relationships which were developed for surrogate parameters and key parameter of interest were of a similar format for road and roof surfaces, namely it was in the form of simple linear regression equations. The identified relationships for road surfaces were DTN-TDS:DOC, TP-TS:TOC, TSS-TTU, TDS-EC and TSTTU: EC. The identified relationships for roof surfaces were DTN-TDS and TSTTU: EC. Some of the relationships developed had a higher confidence interval whilst others had a relatively low confidence interval. The relationships obtained for DTN-TDS, DTN-DOC, TP-TS and TS-EC for road surfaces demonstrated good near site portability potential. Currently, best management practices are focussed on providing treatment measures for stormwater runoff at catchment outlets where separation of road and roof runoff is not found. In this context, it is important to find a common set of surrogate parameter relationships for road surfaces and roof surfaces to evaluate urban stormwater quality. Consequently DTN-TDS, TS-EC and TS-TTU relationships were identified as the common relationships which are capable of providing measurements of DTN and TS irrespective of the surface type

    Impact of roof surface runoff on urban water quality

    Get PDF
    The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies

    Turbulence characteristics of shallow open channel flow with and without cylinders

    No full text
    • …
    corecore