46 research outputs found

    Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches toward sustainable management

    Get PDF
    Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset. (Résumé d'auteur

    Banana value chain profile for Ecuador: The world’s largest exporter is at risk from Fusarium TR4

    Get PDF

    Banana value chain profile for Peru: A top organic producing country is threatened by Fusarium TR4

    Get PDF

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore